skip_on_cran() if (!requireNamespace("cmdstanr", quietly = TRUE)) { backend <- "rstan" ## if using rstan backend, models can crash on Windows ## so skip if on windows and cannot use cmdstanr skip_on_os("windows") } else { if (isFALSE(is.null(cmdstanr::cmdstan_version(error_on_NA = FALSE)))) { backend <- "cmdstanr" } } suppressWarnings( m.bayes <- brms::brm( formula = am ~ mpg, family = "bernoulli", data = mtcars, iter = 1000, warmup = 500, seed = 1234, chains = 2, backend = backend, save_pars = save_pars(all = TRUE), silent = 2, refresh = 0) ) h <- .001 margins.bayes <- brmsmargins(m.bayes, add = data.frame(mpg = c(0, h)), CI = 0.95, contrasts = cbind(AME = c(-1 / h, 1 / h))) ame.bayes <- margins.bayes$ContrastSummary test_that("brmsmargins runs for a fixed effects logistic model", { expect_type(margins.bayes, "list") expect_equal(nrow(margins.bayes$Posterior), ndraws(m.bayes)) expect_equal(nrow(margins.bayes$Contrasts), ndraws(m.bayes)) expect_true(all(margins.bayes$M >= 0 & margins.bayes$M <= 1)) expect_true(all(margins.bayes$Mdn >= 0 & margins.bayes$Mdn <= 1)) expect_true(all(margins.bayes$LL >= 0 & margins.bayes$LL <= 1)) expect_true(all(margins.bayes$UL >= 0 & margins.bayes$UL <= 1)) expect_true(ame.bayes$M >= 0 && ame.bayes$M <= 1) expect_true(ame.bayes$Mdn >= 0 && ame.bayes$Mdn <= 1) expect_true(ame.bayes$LL >= 0 && ame.bayes$LL <= 1) expect_true(ame.bayes$UL >= 0 && ame.bayes$UL <= 1) }) skip_if_not_installed("margins") m.freq <- glm(am ~ mpg, data = mtcars, family = binomial()) ame.freq <- summary(margins::margins(m.freq)) test_that("brmsmargins roughly matches margins on a frequentist fixed effects logistic model", { expect_true(abs(ame.freq$AME - ame.bayes$M) < .01) expect_true(abs(ame.freq$lower - ame.bayes$LL) < .01) expect_true(abs(ame.freq$upper - ame.bayes$UL) < .01) })