context("Tests for standata") test_that(paste("standata returns correct data names ", "for fixed and random effects"), { expect_equal(sort(names(standata(rating ~ treat + period + carry + (1|subject), data = inhaler))), sort(c("N", "Y", "K", "Kc", "X", "Z_1_1", "J_1", "N_1", "M_1", "NC_1", "prior_only"))) expect_equal(sort(names(standata(rating ~ treat + period + carry + (1+treat|id|subject), data = inhaler, family = "categorical"))), sort(c("N", "Y", "ncat", "K_mu2", "Kc_mu2", "X_mu2", "Z_1_mu2_1", "Z_1_mu2_2", "K_mu3", "Kc_mu3", "X_mu3", "Z_1_mu3_3", "Z_1_mu3_4", "K_mu4", "Kc_mu4", "X_mu4", "Z_1_mu4_5", "Z_1_mu4_6", "J_1", "N_1", "M_1", "NC_1", "prior_only"))) expect_equal(sort(names(standata(rating ~ treat + period + carry + (1+treat|subject), data = inhaler))), sort(c("N", "Y", "K", "Kc", "X", "Z_1_1", "Z_1_2", "J_1", "N_1", "M_1", "NC_1", "prior_only"))) dat <- data.frame(y = 1:10, g = 1:10, h = 11:10, x = rep(0,10)) expect_equal(sort(names(standata(y ~ 0 + Intercept + x + (1|g) + (1|h), dat, "poisson"))), sort(c("N", "Y", "K", "X", "Z_1_1", "Z_2_1", "J_1", "J_2", "N_1", "M_1", "NC_1", "N_2", "M_2", "NC_2", "prior_only"))) expect_true(all(c("Z_1_1", "Z_1_2", "Z_2_1", "Z_2_2") %in% names(standata(y ~ x + (1+x|g/h), dat)))) expect_equal(standata(y ~ x + (1+x|g+h), dat), standata(y ~ x + (1+x|g) + (1+x|h), dat)) }) test_that(paste("standata handles variables used as fixed effects", "and grouping factors at the same time"), { data <- data.frame(y = 1:9, x = factor(rep(c("a","b","c"), 3))) standata <- standata(y ~ x + (1|x), data = data) expect_equal(colnames(standata$X), c("Intercept", "xb", "xc")) expect_equal(standata$J_1, as.array(rep(1:3, 3))) standata2 <- standata(y ~ x + (1|x), data = data, control = list(not4stan = TRUE)) expect_equal(colnames(standata2$X), c("Intercept", "xb", "xc")) }) test_that("standata returns correct data names for addition terms", { dat <- data.frame(y = 1:10, w = 1:10, t = 1:10, x = rep(0,10), c = sample(-1:1,10,TRUE)) expect_equal(names(standata(y | se(w) ~ x, dat, gaussian())), c("N", "Y", "se", "K", "Kc", "X", "sigma", "prior_only")) expect_equal(names(standata(y | weights(w) ~ x, dat, "gaussian")), c("N", "Y", "weights", "K", "Kc", "X", "prior_only")) expect_equal(names(standata(y | cens(c) ~ x, dat, "student")), c("N", "Y", "cens", "K", "Kc", "X", "prior_only")) expect_equal(names(standata(y | trials(t) ~ x, dat, "binomial")), c("N", "Y", "trials", "K", "Kc", "X", "prior_only")) expect_equal(names(standata(y | trials(10) ~ x, dat, "binomial")), c("N", "Y", "trials", "K", "Kc", "X", "prior_only")) expect_equal(names(standata(y | thres(11) ~ x, dat, "acat")), c("N", "Y", "nthres", "K", "Kc", "X", "disc", "prior_only")) expect_equal(names(standata(y | thres(10) ~ x, dat, cumulative())), c("N", "Y", "nthres", "K", "Kc", "X", "disc", "prior_only")) sdata <- standata(y | trunc(0,20) ~ x, dat, "gaussian") expect_true(all(sdata$lb == 0) && all(sdata$ub == 20)) sdata <- standata(y | trunc(ub = 21:30) ~ x, dat) expect_true(all(all(sdata$ub == 21:30))) }) test_that(paste("standata accepts correct response variables", "depending on the family"), { expect_equal(standata(y ~ 1, data = data.frame(y = seq(-9.9,0,0.1)), family = "student")$Y, as.array(seq(-9.9,0,0.1))) expect_equal(standata(y | trials(10) ~ 1, data = data.frame(y = 1:10), family = "binomial")$Y, as.array(1:10)) expect_equal(standata(y ~ 1, data = data.frame(y = 10:20), family = "poisson")$Y, as.array(10:20)) expect_equal(standata(y ~ 1, data = data.frame(y = rep(-c(1:2),5)), family = "bernoulli")$Y, as.array(rep(1:0,5))) expect_equal(standata(y ~ 1, data = data.frame(y = rep(c(TRUE, FALSE),5)), family = "bernoulli")$Y, as.array(rep(1:0,5))) expect_equal(standata(y ~ 1, data = data.frame(y = rep(1,5)), family = "bernoulli")$Y, as.array(rep(1, 5))) expect_equal(standata(y ~ 1, data = data.frame(y = rep(0,5)), family = "bernoulli")$Y, as.array(rep(0, 5))) expect_equal(standata(y ~ 1, data = data.frame(y = rep(1:10,5)), family = "categorical")$Y, as.array(rep(1:10,5))) expect_equal(standata(y ~ 1, data = data.frame(y = rep(11:20,5)), family = "categorical")$Y, as.array(rep(1:10,5))) expect_equal(standata(y ~ 1, data = data.frame(y = factor(rep(11:20,5))), family = "categorical")$Y, as.array(rep(1:10,5))) expect_equal(standata(y ~ 1, data = data.frame(y = rep(1:10,5)), family = "cumulative")$Y, as.array(rep(1:10,5))) dat <- data.frame(y = factor(rep(-4:5,5), order = TRUE)) expect_equal(standata(y ~ 1, data = dat, family = "acat")$Y, as.array(rep(1:10,5))) expect_equal(standata(y ~ 1, data = data.frame(y = seq(1,10,0.1)), family = "exponential")$Y, as.array(seq(1,10,0.1))) dat <- data.frame(y1 = 1:10, y2 = 11:20, x = rep(0,10)) form <- bf(mvbind(y1, y2) ~ x) + set_rescor(TRUE) sdata <- standata(form, data = dat) expect_equal(sdata$Y_y1, as.array(1:10)) expect_equal(sdata$Y_y2, as.array(11:20)) }) test_that(paste("standata rejects incorrect response variables", "depending on the family"), { expect_error(standata(y ~ 1, data = data.frame(y = factor(1:10)), family = "student"), "Family 'student' requires numeric responses") expect_error(standata(y ~ 1, data = data.frame(y = -5:5), family = "geometric"), "Family 'geometric' requires response greater than or equal to 0") expect_error(standata(y ~ 1, data = data.frame(y = -1:1), family = "bernoulli"), "contain only two different values") expect_error(standata(y ~ 1, data = data.frame(y = factor(-1:1)), family = "cratio"), "Family 'cratio' requires either positive integers or ordered factors") expect_error(standata(y ~ 1, data = data.frame(y = rep(0.5:7.5), 2), family = "sratio"), "Family 'sratio' requires either positive integers or ordered factors") expect_error(standata(y ~ 1, data = data.frame(y = rep(-7.5:7.5), 2), family = "gamma"), "Family 'gamma' requires response greater than 0") expect_error(standata(y ~ 1, data = data.frame(y = c(0.1, 0.5, 1)), family = Beta()), "Family 'beta' requires response smaller than 1") expect_error(standata(y ~ 1, data = data.frame(y = c(0, 0.5, 4)), family = von_mises()), "Family 'von_mises' requires response smaller than or equal to 3.14") expect_error(standata(y ~ 1, data = data.frame(y = c(-1, 2, 5)), family = hurdle_gamma()), "Family 'hurdle_gamma' requires response greater than or equal to 0") }) test_that("standata suggests using family bernoulli if appropriate", { expect_message(standata(y | trials(1) ~ 1, data = list(y = rep(0:1,5)), family = "binomial"), "family 'bernoulli' might be a more efficient choice.") expect_message(standata(y ~ 1, data = data.frame(y = rep(1:2, 5)), family = "acat"), "family 'bernoulli' might be a more efficient choice.") expect_message(standata(y ~ 1, data = data.frame(y = rep(0:1,5)), family = "categorical"), "family 'bernoulli' might be a more efficient choice.") }) test_that("standata returns correct values for addition terms", { dat <- data.frame(y = rnorm(9), s = 1:9, w = 1:9, c1 = rep(-1:1, 3), c2 = rep(c("left","none","right"), 3), c3 = c(rep(c(TRUE, FALSE), 4), FALSE), c4 = c(sample(-1:1, 5, TRUE), rep(2, 4)), t = 11:19) expect_equivalent(standata(y | se(s) ~ 1, data = dat)$se, as.array(1:9)) expect_equal(standata(y | weights(w) ~ 1, data = dat)$weights, as.array(1:9)) expect_equal(standata(y | cens(c1) ~ 1, data = dat)$cens, as.array(rep(-1:1, 3))) expect_equal(standata(y | cens(c2) ~ 1, data = dat)$cens, as.array(rep(-1:1, 3))) expect_equal(standata(y | cens(c3) ~ 1, data = dat)$cens, as.array(c(rep(1:0, 4), 0))) expect_equal(standata(y | cens(c4, y + 2) ~ 1, data = dat)$rcens, as.array(c(rep(0, 5), dat$y[6:9] + 2))) expect_equal(standata(s | trials(10) ~ 1, dat, family = "binomial")$trials, as.array(rep(10, 9))) expect_equal(standata(s | trials(t) ~ 1, data = dat, family = "binomial")$trials, as.array(11:19)) expect_equal(SW(standata(s | cat(19) ~ 1, data = dat, family = "cumulative"))$nthres, 18) }) test_that("standata rejects incorrect addition terms", { dat <- data.frame(y = rnorm(9), s = -(1:9), w = -(1:9), c = rep(-2:0, 3), t = 9:1, z = 1:9) expect_error(standata(y | se(s) ~ 1, data = dat), "Standard errors must be non-negative") expect_error(standata(y | weights(w) ~ 1, data = dat), "Weights must be non-negative") expect_error(standata(y | cens(c) ~ 1, data = dat)) expect_error(standata(z | trials(t) ~ 1, data = dat, family = "binomial"), "Number of trials is smaller than the number of events") }) test_that("standata handles multivariate models", { dat <- data.frame( y1 = 1:10, y2 = 11:20, x = rep(0, 10), g = rep(1:2, 5), censi = sample(0:1, 10, TRUE), tim = 10:1, w = 1:10 ) form <- bf(mvbind(y1, y2) | weights(w) ~ x) + set_rescor(TRUE) sdata <- standata(form, data = dat) expect_equal(sdata$Y_y1, as.array(dat$y1)) expect_equal(sdata$Y_y2, as.array(dat$y2)) expect_equal(sdata$weights_y1, as.array(1:10)) expect_error(standata(bf(mvbind(y1, y2, y2) ~ x) + set_resor(FALSE), data = dat), "Cannot use the same response variable twice") form <- bf(mvbind(y1 / y2, y2, y1 * 3) ~ x) + set_rescor(FALSE) sdata <- standata(form, data = dat) expect_equal(sdata$Y_y1y2, as.array(dat$y1 / dat$y2)) sdata <- suppressWarnings( standata(mvbind(y1, y2) ~ x, dat, autocor = cor_ar(~ tim | g)) ) target1 <- c(seq(9, 1, -2), seq(10, 2, -2)) expect_equal(sdata$Y_y1, as.array(target1)) target2 <- c(seq(19, 11, -2), seq(20, 12, -2)) expect_equal(sdata$Y_y2, as.array(target2)) # models without residual correlations expect_warning( bform <- bf(y1 | cens(censi) ~ x + y2 + (x|2|g)) + gaussian() + cor_ar() + (bf(x ~ 1) + mixture(poisson, nmix = 2)) + (bf(y2 ~ s(y2) + (1|2|g)) + skew_normal()), "Using 'cor_brms' objects for 'autocor' is deprecated" ) bprior <- prior(normal(0, 5), resp = y1) + prior(normal(0, 10), resp = y2) + prior(dirichlet(2, 1), theta, resp = x) sdata <- standata(bform, dat, prior = bprior) sdata_names <- c( "N", "J_1_y1", "cens_y1", "Kma_y1", "Z_1_y2_3", "Zs_y2_1_1", "Y_y2", "con_theta_x", "X_mu2_x" ) expect_true(all(sdata_names %in% names(sdata))) expect_equal(sdata$con_theta_x, as.array(c(2, 1))) }) test_that("standata removes NAs correctly", { dat <- data.frame(y = c(rnorm(9), NA)) sdata <- suppressWarnings(standata(y ~ 1, dat)) expect_equal(as.numeric(sdata$Y), dat$y[1:9]) }) test_that("standata handles the 'subset' addition argument correctly", { dat1 <- data.frame( y1 = rnorm(15), y2 = NA, x1 = rnorm(15), x2 = NA, x3 = rnorm(15), sub1 = 1, sub2 = 0 ) dat2 <- data.frame( y1 = NA, y2 = rnorm(10), x1 = NA, x2 = rnorm(10), x3 = NA, sub1 = 0, sub2 = 1 ) dat <- rbind(dat1, dat2) bform <- bf(y1 | subset(sub1) ~ x1*x3 + sin(x1), family = gaussian()) + bf(y2 | subset(sub2) ~ x2, family = gaussian()) + set_rescor(FALSE) sdata <- standata(bform, dat) nsub1 <- sum(dat$sub1) nsub2 <- sum(dat$sub2) expect_equal(sdata$N_y1, nsub1) expect_equal(sdata$N_y2, nsub2) expect_equal(length(sdata$Y_y1), nsub1) expect_equal(nrow(sdata$X_y2), nsub2) }) test_that("standata returns correct data for ARMA terms", { dat <- data.frame(y = 1:10, x = rep(0, 10), tim = 10:1, g = rep(3:4, 5)) sdata <- standata(y ~ x + ma(tim, g), data = dat) expect_equal(sdata$J_lag, as.array(c(1, 1, 1, 1, 0, 1, 1, 1, 1, 0))) sdata <- standata(y ~ x + ar(tim, g, p = 2), data = dat) expect_equal(sdata$J_lag, as.array(c(1, 2, 2, 2, 0, 1, 2, 2, 2, 0))) sdata <- standata(y ~ x + ar(tim, g, cov = TRUE), data = dat) expect_equal(sdata$begin_tg, as.array(c(1, 6))) expect_equal(sdata$nobs_tg, as.array(c(5, 5))) sdata <- standata(y ~ x + ar(tim), data = dat, family = poisson(), prior = prior(horseshoe(), class = sderr)) expect_equal(sdata$Kscales, 1) bform <- bf(y ~ exp(b * x), b ~ 1, nl = TRUE, autocor = ~arma()) sdata <- standata(bform, dat) }) test_that("standata returns correct data for UNSTR covariance terms", { dat <- data.frame(y = 1:12, x = rnorm(12), tim = c(5:1, 1:5, c(0, 4)), g = c(rep(3:4, 5), rep(2, 2))) sdata <- standata(y ~ x + unstr(tim, g), data = dat) expect_equal(sdata$n_unique_t, 6) expect_equal(sdata$n_unique_cortime, 15) Jtime <- rbind(c(1, 5, 0, 0, 0), 2:6, 2:6) expect_equal(sdata$Jtime_tg, Jtime) }) test_that("standata allows to retrieve the initial data order", { dat <- data.frame(y1 = rnorm(100), y2 = rnorm(100), id = sample(1:10, 100, TRUE), time = sample(1:100, 100)) # univariate model sdata1 <- standata(y1 ~ ar(time, id), data = dat, internal = TRUE) expect_equal(dat$y1, as.numeric(sdata1$Y[attr(sdata1, "old_order")])) # multivariate model form <- bf(mvbind(y1, y2) ~ ma(time, id)) + set_rescor(FALSE) sdata2 <- standata(form, data = dat, internal = TRUE) expect_equal(sdata2$Y_y1[attr(sdata2, "old_order")], as.array(dat$y1)) expect_equal(sdata2$Y_y2[attr(sdata2, "old_order")], as.array(dat$y2)) }) test_that("standata handles covariance matrices correctly", { A <- structure(diag(1, 4), dimnames = list(1:4, NULL)) sdata <- standata(count ~ Trt + (1|gr(visit, cov = A)), data = epilepsy, data2 = list(A = A)) expect_equivalent(sdata$Lcov_1, t(chol(A))) B <- structure(diag(1:5), dimnames = list(c(1,5,2,4,3), NULL)) sdata <- standata(count ~ Trt + (1|gr(visit, cov = B)), data = epilepsy, data2 = list(B = B)) expect_equivalent(sdata$Lcov_1, t(chol(B[c(1,3,5,4), c(1,3,5,4)]))) B <- diag(1, 4) expect_error(standata(count ~ Trt + (1|gr(visit, cov = B)), data = epilepsy, data2 = list(B = B)), "Row or column names are required") B <- structure(diag(1, 4), dimnames = list(2:5, NULL)) expect_error(standata(count ~ Trt + (1|gr(visit, cov = B)), data = epilepsy, data2 = list(B = B)), "Levels of .* do not match") B <- A B[1,2] <- 0.5 expect_error(standata(count ~ Trt + (1|gr(visit, cov = B)), data = epilepsy, data2 = list(B = B)), "must be symmetric") expect_warning( sdata <- standata(count ~ Trt + (1|visit), data = epilepsy, cov_ranef = list(visit = A)), "Argument 'cov_ranef' is deprecated" ) expect_equivalent(sdata$Lcov_1, t(chol(A))) }) test_that("standata correctly prepares data for non-linear models", { flist <- list(a ~ x + (1|1|g), b ~ mo(z) + (1|1|g)) dat <- data.frame( y = rnorm(9), x = rnorm(9), z = sample(1:9, 9), g = rep(1:3, 3) ) bform <- bf(y ~ a - b^z, flist = flist, nl = TRUE) sdata <- standata(bform, data = dat) expect_equal(names(sdata), c("N", "Y", "C_1", "K_a", "X_a", "Z_1_a_1", "K_b", "X_b", "Ksp_b", "Imo_b", "Xmo_b_1", "Jmo_b", "con_simo_b_1", "Z_1_b_2", "J_1", "N_1", "M_1", "NC_1", "prior_only") ) expect_equal(colnames(sdata$X_a), c("Intercept", "x")) expect_equal(sdata$J_1, as.array(dat$g)) bform <- bf(y ~ x) + nlf(sigma ~ a1 * exp(-x/(a2 + z))) + lf(a1 ~ 1, a2 ~ z + (x|g)) + lf(alpha ~ x) sdata <- standata(bform, dat, family = skew_normal()) sdata_names <- c("C_sigma_1", "X_a2", "Z_1_a2_1") expect_true(all(sdata_names %in% names(sdata))) }) test_that("standata correctly prepares data for monotonic effects", { data <- data.frame( y = rpois(120, 10), x1 = rep(1:4, 30), z = rnorm(10), x2 = factor(rep(c("a", "b", "c"), 40), ordered = TRUE) ) sdata <- standata(y ~ mo(x1)*mo(x2)*y, data = data) sdata_names <- c("Xmo_1", "Imo", "Jmo", "con_simo_8", "con_simo_5") expect_true(all(sdata_names %in% names(sdata))) expect_equivalent(sdata$Xmo_1, as.array(data$x1 - 1)) expect_equivalent(sdata$Xmo_2, as.array(as.numeric(data$x2) - 1)) expect_equal( as.vector(unname(sdata$Jmo)), rep(c(max(data$x1) - 1, length(unique(data$x2)) - 1), 4) ) expect_equal(sdata$con_simo_1, as.array(rep(1, 3))) prior <- set_prior("dirichlet(1:3)", coef = "mox11", class = "simo", dpar = "sigma") sdata <- standata(bf(y ~ 1, sigma ~ mo(x1)), data = data, prior = prior) expect_equal(sdata$con_simo_sigma_1, as.array(1:3)) prior <- c( set_prior("normal(0,1)", class = "b", coef = "mox1"), set_prior("dirichlet(c(1, 0.5, 2))", class = "simo", coef = "mox11"), prior_(~dirichlet(c(1, 0.5, 2)), class = "simo", coef = "mox1:mox21") ) sdata <- standata(y ~ mo(x1)*mo(x2), data = data, prior = prior) expect_equal(sdata$con_simo_1, as.array(c(1, 0.5, 2))) expect_equal(sdata$con_simo_3, as.array(c(1, 0.5, 2))) # test issue #924 (conditional monotonicity) prior <- c(prior(dirichlet(c(1, 0.5, 2)), simo, coef = "v"), prior(dirichlet(c(1,3)), simo, coef = "w")) sdata <- standata(y ~ y*mo(x1, id = "v")*mo(x2, id = "w"), data, prior = prior) expect_equal(sdata$con_simo_1, as.array(c(1, 0.5, 2))) expect_equal(sdata$con_simo_2, as.array(c(1, 3))) expect_true(!"sdata$con_simo_3" %in% names(sdata)) expect_error( standata(y ~ mo(z), data = data), "Monotonic predictors must be integers or ordered factors" ) prior <- c(set_prior("dirichlet(c(1,0.5,2))", class = "simo", coef = "mox21")) expect_error( standata(y ~ mo(x2), data = data, prior = prior), "Invalid Dirichlet prior" ) }) test_that("standata returns FCOR covariance matrices", { data <- data.frame(y = 1:5) data2 <- list(V = diag(5)) expect_equal(standata(y ~ fcor(V), data, data2 = data2)$Mfcor, data2$V, check.attributes = FALSE) expect_warning( expect_error( standata(y~1, data, autocor = cor_fixed(diag(2))), "Dimensions of 'M' for FCOR terms must be equal" ), "Using 'cor_brms' objects for 'autocor' is deprecated" ) }) test_that("standata returns data for GAMMs", { dat <- data.frame(y = rnorm(10), x1 = rnorm(10), x2 = rnorm(10), x3 = rnorm(10), z = rnorm(10), g = factor(rep(1:2, 5))) sdata <- standata(y ~ s(x1) + z + s(x2, by = x3), data = dat) expect_equal(sdata$nb_1, 1) expect_equal(as.vector(sdata$knots_2), 8) expect_equal(dim(sdata$Zs_1_1), c(10, 8)) expect_equal(dim(sdata$Zs_2_1), c(10, 8)) bform <- bf(y ~ lp, lp ~ s(x1) + z + s(x2, by = x3), nl = TRUE) sdata <- standata(bform, dat) expect_equal(sdata$nb_lp_1, 1) expect_equal(as.vector(sdata$knots_lp_2), 8) expect_equal(dim(sdata$Zs_lp_1_1), c(10, 8)) expect_equal(dim(sdata$Zs_lp_2_1), c(10, 8)) sdata <- standata(y ~ g + s(x2, by = g), data = dat) expect_true(all(c("knots_1", "knots_2") %in% names(sdata))) # test issue #562 dat$g <- as.character(dat$g) sdata <- standata(y ~ g + s(x2, by = g), data = dat) expect_true(all(c("knots_1", "knots_2") %in% names(sdata))) sdata <- standata(y ~ t2(x1, x2), data = dat) expect_equal(sdata$nb_1, 3) expect_equal(as.vector(sdata$knots_1), c(9, 6, 6)) expect_equal(dim(sdata$Zs_1_1), c(10, 9)) expect_equal(dim(sdata$Zs_1_3), c(10, 6)) expect_error(standata(y ~ te(x1, x2), data = dat), "smooths 'te' and 'ti' are not yet implemented") }) test_that("standata returns correct group ID data", { form <- bf(count ~ Trt + (1+Trt|3|visit) + (1|patient), shape ~ (1|3|visit) + (Trt||patient)) sdata <- standata(form, data = epilepsy, family = negbinomial()) expect_true(all(c("Z_1_1", "Z_2_2", "Z_3_shape_1", "Z_2_shape_3") %in% names(sdata))) form <- bf(count ~ a, sigma ~ (1|3|visit) + (Trt||patient), a ~ Trt + (1+Trt|3|visit) + (1|patient), nl = TRUE) sdata <- standata(form, data = epilepsy, family = student()) expect_true(all(c("Z_1_sigma_1", "Z_2_a_3", "Z_2_sigma_1", "Z_3_a_1") %in% names(sdata))) }) test_that("standata handles population-level intercepts", { dat <- data.frame(y = 10:1, x = 1:10) sdata <- standata(y ~ 0 + x, data = dat) expect_equal(unname(sdata$X[, 1]), dat$x) sdata <- standata(y ~ x, dat, cumulative(), control = list(not4stan = TRUE)) expect_equal(unname(sdata$X[, 1]), dat$x) sdata <- standata(y ~ 0 + Intercept + x, data = dat) expect_equal(unname(sdata$X), cbind(1, dat$x)) }) test_that("standata handles category specific effects", { sdata <- standata(rating ~ period + carry + cse(treat), data = inhaler, family = sratio()) expect_equivalent(sdata$Xcs, matrix(inhaler$treat)) sdata <- standata(rating ~ period + carry + cs(treat) + (cs(1)|subject), data = inhaler, family = acat()) expect_equivalent(sdata$Z_1_3, as.array(rep(1, nrow(inhaler)))) sdata <- standata(rating ~ period + carry + (cs(treat)|subject), data = inhaler, family = cratio()) expect_equivalent(sdata$Z_1_4, as.array(inhaler$treat)) expect_warning( standata(rating ~ 1 + cs(treat), data = inhaler, family = "cumulative"), "Category specific effects for this family should be considered experimental" ) expect_error(standata(rating ~ 1 + (treat + cs(1)|subject), data = inhaler, family = "cratio"), "category specific effects in separate group-level terms") }) test_that("standata handles wiener diffusion models", { dat <- data.frame(q = 1:10, resp = sample(0:1, 10, TRUE), x = rnorm(10)) dat$dec <- ifelse(dat$resp == 0, "lower", "upper") dat$test <- "a" sdata <- standata(q | dec(resp) ~ x, data = dat, family = wiener()) expect_equal(sdata$dec, as.array(dat$resp)) sdata <- standata(q | dec(dec) ~ x, data = dat, family = wiener()) expect_equal(sdata$dec, as.array(dat$resp)) expect_error(standata(q | dec(test) ~ x, data = dat, family = wiener()), "Decisions should be 'lower' or 'upper'") }) test_that("standata handles noise-free terms", { N <- 30 dat <- data.frame( y = rnorm(N), x = rnorm(N), z = rnorm(N), xsd = abs(rnorm(N, 1)), zsd = abs(rnorm(N, 1)), ID = rep(1:5, each = N / 5) ) sdata <- standata( bf(y ~ me(x, xsd)*me(z, zsd)*x, sigma ~ me(x, xsd)), data = dat ) expect_equal(sdata$Xn_1, as.array(dat$x)) expect_equal(sdata$noise_2, as.array(dat$zsd)) expect_equal(unname(sdata$Csp_3), as.array(dat$x)) expect_equal(sdata$Ksp, 6) expect_equal(sdata$NCme_1, 1) }) test_that("standata handles noise-free terms with grouping factors", { dat <- data.frame( y = rnorm(10), x1 = rep(1:5, each = 2), sdx = rep(1:5, each = 2), g = rep(c("b", "c", "a", "d", 1), each = 2) ) sdata <- standata(y ~ me(x1, sdx, gr = g), dat) expect_equal(unname(sdata$Xn_1), as.array(c(5, 3, 1, 2, 4))) expect_equal(unname(sdata$noise_1), as.array(c(5, 3, 1, 2, 4))) dat$sdx[2] <- 10 expect_error( standata(y ~ me(x1, sdx, gr = g), dat), "Measured values and measurement error should be unique" ) }) test_that("standata handles missing value terms", { dat = data.frame(y = rnorm(10), x = rnorm(10), g = 1:10) miss <- c(1, 3, 9) dat$x[miss] <- NA bform <- bf(y ~ mi(x)*g) + bf(x | mi() ~ g) + set_rescor(FALSE) sdata <- standata(bform, dat) expect_equal(sdata$Jmi_x, as.array(miss)) expect_true(all(is.infinite(sdata$Y_x[miss]))) # dots in variable names are correctly handled #452 dat$x.2 <- dat$x bform <- bf(y ~ mi(x.2)*g) + bf(x.2 | mi() ~ g) + set_rescor(FALSE) sdata <- standata(bform, dat) expect_equal(sdata$Jmi_x, as.array(miss)) dat$z <- rbeta(10, 1, 1) dat$z[miss] <- NA bform <- bf(exp(y) ~ mi(z)*g) + bf(z | mi() ~ g, family = Beta()) + set_rescor(FALSE) sdata <- standata(bform, dat) expect_equal(sdata$Jmi_z, as.array(miss)) }) test_that("standata handles overimputation", { dat = data.frame(y = rnorm(10), x = rnorm(10), g = 1:10, sdy = 1) miss <- c(1, 3, 9) dat$x[miss] <- dat$sdy[miss] <- NA bform <- bf(y ~ mi(x)*g) + bf(x | mi(sdy) ~ g) + set_rescor(FALSE) sdata <- standata(bform, dat) expect_equal(sdata$Jme_x, as.array(setdiff(1:10, miss))) expect_true(all(is.infinite(sdata$Y_x[miss]))) expect_true(all(is.infinite(sdata$noise_x[miss]))) }) test_that("standata handles 'mi' terms with 'subset'", { dat <- data.frame( y = rnorm(10), x = c(rnorm(9), NA), z = rnorm(10), g1 = sample(1:5, 10, TRUE), g2 = 10:1, g3 = 1:10, s = c(FALSE, rep(TRUE, 9)) ) bform <- bf(y ~ mi(x, idx = g1)) + bf(x | mi() + index(g2) + subset(s) ~ 1) + set_rescor(FALSE) sdata <- standata(bform, dat) expect_true(all(sdata$idxl_y_x_1 %in% 9:5)) # test a bunch of errors # fails on CRAN for some reason # bform <- bf(y ~ mi(x, idx = g1)) + # bf(x | mi() + index(g3) + subset(s) ~ 1) + # set_rescor(FALSE) # expect_error(standata(bform, dat), # "Could not match all indices in response 'x'" # ) bform <- bf(y ~ mi(x, idx = g1)) + bf(x | mi() + subset(s) ~ 1) + set_rescor(FALSE) expect_error(standata(bform, dat), "Response 'x' needs to have an 'index' addition term" ) bform <- bf(y ~ mi(x)) + bf(x | mi() + subset(s) + index(g2) ~ 1) + set_rescor(FALSE) expect_error(standata(bform, dat), "mi() terms of subsetted variables require the 'idx' argument", fixed = TRUE ) bform <- bf(y | mi() ~ mi(x, idx = g1)) + bf(x | mi() + subset(s) + index(g2) ~ mi(y)) + set_rescor(FALSE) expect_error(standata(bform, dat), "mi() terms in subsetted formulas require the 'idx' argument", fixed = TRUE ) }) test_that("standata handles multi-membership models", { dat <- data.frame(y = rnorm(10), g1 = c(7:2, rep(10, 4)), g2 = 1:10, w1 = rep(1, 10), w2 = rep(abs(rnorm(10)))) sdata <- standata(y ~ (1|mm(g1,g2,g1,g2)), data = dat) expect_true(all(paste0(c("W_1_", "J_1_"), 1:4) %in% names(sdata))) expect_equal(sdata$W_1_4, as.array(rep(0.25, 10))) expect_equal(unname(sdata$Z_1_1_1), as.array(rep(1, 10))) expect_equal(unname(sdata$Z_1_1_2), as.array(rep(1, 10))) # this checks whether combintation of factor levels works as intended expect_equal(sdata$J_1_1, as.array(c(6, 5, 4, 3, 2, 1, 7, 7, 7, 7))) expect_equal(sdata$J_1_2, as.array(c(8, 1, 2, 3, 4, 5, 6, 9, 10, 7))) sdata <- standata(y ~ (1|mm(g1,g2, weights = cbind(w1, w2))), dat) expect_equal(sdata$W_1_1, as.array(dat$w1 / (dat$w1 + dat$w2))) # tests mmc terms sdata <- standata(y ~ (1+mmc(w1, w2)|mm(g1,g2)), data = dat) expect_equal(unname(sdata$Z_1_2_1), as.array(dat$w1)) expect_equal(unname(sdata$Z_1_2_2), as.array(dat$w2)) expect_error( standata(y ~ (mmc(w1, w2, y)|mm(g1,g2)), data = dat), "Invalid term 'mmc(w1, w2, y)':", fixed = TRUE ) expect_error( standata(y ~ (mmc(w1, w2)*y|mm(g1,g2)), data = dat), "The term 'mmc(w1, w2):y' is invalid", fixed = TRUE ) # tests if ":" works in multi-membership models sdata <- standata(y ~ (1|mm(w1:g1,w1:g2)), dat) expect_true(all(c("J_1_1", "J_1_2") %in% names(sdata))) }) test_that("by variables in grouping terms are handled correctly", { gvar <- c("1A", "1B", "2A", "2B", "3A", "3B", "10", "100", "2", "3") gvar <- rep(gvar, each = 10) g_order <- order(gvar) byvar <- c(0, 4.5, 3, 2, "x 1") byvar <- factor(rep(byvar, each = 20)) dat <- data.frame( y = rnorm(100), x = rnorm(100), g = gvar, g2 = gvar[g_order], z = byvar, z2 = byvar[g_order], z3 = factor(1:2) ) sdata <- standata(y ~ x + (x | gr(g, by = z)), dat) expect_equal(sdata$Nby_1, 5) expect_equal(sdata$Jby_1, as.array(c(2, 2, 1, 1, 5, 4, 4, 5, 3, 3))) sdata <- standata(y ~ x + (x | mm(g, g2, by = cbind(z, z2))), dat) expect_equal(sdata$Nby_1, 5) expect_equal(sdata$Jby_1, as.array(c(2, 2, 1, 1, 5, 4, 4, 5, 3, 3))) expect_error(standata(y ~ x + (1|gr(g, by = z3)), dat), "Some levels of 'g' correspond to multiple levels of 'z3'") }) test_that("standata handles calls to the 'poly' function", { dat <- data.frame(y = rnorm(10), x = rnorm(10)) expect_equal(colnames(standata(y ~ 1 + poly(x, 3), dat)$X), c("Intercept", "polyx31", "polyx32", "polyx33")) }) test_that("standata allows fixed distributional parameters", { dat <- list(y = 1:10) expect_equal(standata(bf(y ~ 1, nu = 3), dat, student())$nu, 3) expect_equal(standata(y ~ 1, dat, acat())$disc, 1) expect_error(standata(bf(y ~ 1, bias = 0.5), dat), "Invalid fixed parameters: 'bias'") }) test_that("Cell-mean coding can be disabled", { df <- data.frame(y = 1:10, g = rep(c("a", "b"), 5)) bform <- bf(y ~ g) + lf(disc ~ 0 + g + (0 + g | y), cmc = FALSE) + cumulative() sdata <- standata(bform, df) target <- matrix(rep(0:1, 5), dimnames = list(1:10, "gb")) expect_equal(sdata$X_disc, target) expect_equal(unname(sdata$Z_1_disc_1), as.array(rep(0:1, 5))) expect_true(!"Z_1_disc_2" %in% names(sdata)) bform <- bf(y ~ 0 + g + (1 | y), cmc = FALSE) sdata <- standata(bform, df) expect_equal(sdata$X, target) expect_equal(unname(sdata$Z_1_1), as.array(rep(1, 10))) }) test_that("standata correctly includes offsets", { data <- data.frame(y = rnorm(10), x = rnorm(10), c = 1) sdata <- standata(bf(y ~ x + offset(c), sigma ~ offset(c + 1)), data) expect_equal(sdata$offsets, as.array(data$c)) expect_equal(sdata$offsets_sigma, as.array(data$c + 1)) sdata <- standata(y ~ x + offset(c) + offset(x), data) expect_equal(sdata$offsets, as.array(data$c + data$x)) }) test_that("standata includes data for mixture models", { data <- data.frame(y = rnorm(10), x = rnorm(10), c = 1) form <- bf(y ~ x, mu1 ~ 1, family = mixture(gaussian, gaussian)) sdata <- standata(form, data) expect_equal(sdata$con_theta, as.array(c(1, 1))) expect_equal(dim(sdata$X_mu1), c(10, 1)) expect_equal(dim(sdata$X_mu2), c(10, 2)) form <- bf(y ~ x, family = mixture(gaussian, gaussian)) sdata <- standata(form, data, prior = prior(dirichlet(10, 2), theta)) expect_equal(sdata$con_theta, as.array(c(10, 2))) form <- bf(y ~ x, theta1 = 1, theta2 = 3, family = mixture(gaussian, gaussian)) sdata <- standata(form, data) expect_equal(sdata$theta1, 1/4) expect_equal(sdata$theta2, 3/4) }) test_that("standata includes data for Gaussian processes", { dat <- data.frame(y = rnorm(10), x1 = rnorm(10), z = factor(c(2, 2, 2, 3, 4, rep(5, 5)))) sdata <- standata(y ~ gp(x1), dat) expect_equal(max(sdata$Xgp_1) - min(sdata$Xgp_1), 1) sdata <- standata(y ~ gp(x1, scale = FALSE), dat) expect_equal(max(sdata$Xgp_1) - min(sdata$Xgp_1), max(dat$x1) - min(dat$x1)) sdata <- SW(standata(y ~ gp(x1, by = z, gr = TRUE, scale = FALSE), dat)) expect_equal(sdata$Igp_1_2, as.array(4)) expect_equal(sdata$Jgp_1_4, as.array(1:5)) expect_equal(sdata$Igp_1_4, as.array(6:10)) sdata <- SW(standata(y ~ gp(x1, by = y, gr = TRUE), dat)) expect_equal(sdata$Cgp_1, as.array(dat$y)) }) test_that("standata includes data for approximate Gaussian processes", { dat <- data.frame(y = rnorm(10), x1 = sample(1:10, 10), z = factor(c(2, 2, 2, 3, 4, rep(5, 5)))) sdata <- standata(y ~ gp(x1, k = 5, c = 5/4), dat) expect_equal(sdata$NBgp_1, 5) expect_equal(dim(sdata$Xgp_1), c(10, 5)) expect_equal(dim(sdata$slambda_1), c(5, 1)) sdata <- SW(standata(y ~ gp(x1, by = z, k = 5, c = 5/4, scale = FALSE), dat)) expect_equal(sdata$Igp_1_2, as.array(4)) expect_equal(sdata$Cgp_1_2, as.array(1)) expect_equal(sdata$Igp_1_4, as.array(6:10)) }) test_that("standata includes data for SAR models", { dat <- data.frame(y = rnorm(10), x = rnorm(10)) W <- matrix(0, nrow = 10, ncol = 10) dat2 <- list(W = W) sdata <- standata(y ~ x + sar(W), data = dat, data2 = dat2) expect_equal(dim(sdata$M), rep(nrow(W), 2)) dat2 <- list(W = matrix(0, 2, 2)) expect_error( standata(y ~ x + sar(W), data = dat, data2 = dat2), "Dimensions of 'M' for SAR terms must be equal" ) }) test_that("standata includes data for CAR models", { dat = data.frame(y = rnorm(10), x = rnorm(10), obs = 1:10) edges <- cbind(1:10, 10:1) W <- matrix(0, nrow = 10, ncol = 10) for (i in seq_len(nrow(edges))) { W[edges[i, 1], edges[i, 2]] <- 1 } rownames(W) <- 1:nrow(W) dat2 <- list(W = W) sdata <- standata(y ~ x + car(W, gr = obs), dat, data2 = dat2) expect_equal(sdata$Nloc, 10) expect_equal(unname(sdata$Nneigh), rep(1, 10)) expect_equal(unname(sdata$edges1), as.array(10:6)) expect_equal(unname(sdata$edges2), as.array(1:5)) sdata_old <- SW(standata(y ~ x, dat, autocor = cor_car(W))) expect_equal(sdata, sdata_old) rownames(dat2$W) <- c("a", 2:9, "b") dat$group <- rep(c("a", "b"), each = 5) sdata <- standata(y ~ x + car(W, gr = group), dat, data2 = dat2, prior = prior(horseshoe(), class = sdcar)) expect_equal(sdata$Nloc, 2) expect_equal(sdata$edges1, as.array(2)) expect_equal(sdata$edges2, as.array(1)) expect_equal(sdata$Kscales, 1) sdata <- standata(y ~ x + car(W, group, type = "bym2"), data = dat, data2 = dat2) expect_equal(length(sdata$car_scale), 1L) dat2$W[1, 10] <- 4 dat2$W[10, 1] <- 4 expect_message(standata(y ~ car(W, gr = group), dat, data2 = dat2), "Converting all non-zero values in 'M' to 1") # test error messages rownames(dat2$W) <- c(1:9, "a") expect_error(standata(y ~ car(W, gr = group), dat, data2 = dat2), "Row names of 'M' for CAR terms do not match") rownames(dat2$W) <- NULL expect_error(standata(y ~ car(W, gr = group), dat, data2 = dat2), "Row names are required for 'M'") dat2$W[1, 10] <- 0 expect_error(standata(y ~ car(W), dat, data2 = dat2), "'M' for CAR terms must be symmetric") dat2$W[10, 1] <- 0 expect_error(SW(standata(y ~ x + car(W), dat, data2 = dat2)), "all locations should have at least one neighbor") }) test_that("standata includes data of special priors", { dat <- data.frame(y = 1:10, x1 = rnorm(10), x2 = rnorm(10), g = rep(1:2, each = 5), x3 = sample(1:5, 10, TRUE)) # horseshoe prior hs <- horseshoe(7, scale_global = 2, df_global = 3, df_slab = 6, scale_slab = 3) sdata <- standata(y ~ x1*x2, data = dat, prior = set_prior(hs)) expect_equal(sdata$hs_df, 7) expect_equal(sdata$hs_df_global, 3) expect_equal(sdata$hs_df_slab, 6) expect_equal(sdata$hs_scale_global, 2) expect_equal(sdata$hs_scale_slab, 3) hs <- horseshoe(par_ratio = 0.1) sdata <- standata(y ~ x1*x2, data = dat, prior = set_prior(hs)) expect_equal(sdata$hs_scale_global, 0.1 / sqrt(nrow(dat))) # R2D2 prior sdata <- standata(y ~ x1*x2, data = dat, prior = prior(R2D2(0.5, 10))) expect_equal(sdata$R2D2_mean_R2, 0.5) expect_equal(sdata$R2D2_prec_R2, 10) expect_equal(sdata$R2D2_cons_D2, as.array(rep(0.5, 3))) # horseshoe and R2D2 prior applied in a non-linear model hs_a1 <- horseshoe(7, scale_global = 2, df_global = 3) R2D2_a2 <- R2D2(0.5, 10) sdata <- standata( bf(y ~ a1 + a2, a1 ~ x1, a2 ~ 0 + x2, nl = TRUE), data = dat, sample_prior = TRUE, prior = c(set_prior(hs_a1, nlpar = "a1"), set_prior(R2D2_a2, nlpar = "a2")) ) expect_equal(sdata$hs_df_a1, 7) expect_equal(sdata$R2D2_mean_R2_a2, 0.5) bform <- bf(y ~ x1*mo(x3) + (1|g) + gp(x3) + s(x2) + arma(p = 2, q = 2, gr = g)) bprior <- prior(R2D2(cons_D2 = 11:1, main = TRUE), class = b) + prior(R2D2(), class = sd) + prior(R2D2(), class = sds) + prior(R2D2(), class = sdgp) + prior(R2D2(), class = ar) + prior(R2D2(), class = ma) sdata <- standata(bform, data = dat, prior = bprior) expect_equal(sdata$Kscales, 11) expect_equal(sdata$R2D2_cons_D2, as.array(11:1)) }) test_that("dots in formula are correctly expanded", { dat <- data.frame(y = 1:10, x1 = 1:10, x2 = 1:10) sdata <- standata(y ~ ., dat) expect_equal(colnames(sdata$X), c("Intercept", "x1", "x2")) }) test_that("argument 'stanvars' is handled correctly", { bprior <- prior(normal(mean_intercept, 10), class = "Intercept") mean_intercept <- 5 stanvars <- stanvar(mean_intercept) sdata <- standata(count ~ Trt, data = epilepsy, prior = bprior, stanvars = stanvars) expect_equal(sdata$mean_intercept, 5) # define a multi_normal prior with known covariance matrix bprior <- prior(multi_normal(M, V), class = "b") stanvars <- stanvar(rep(0, 2), "M", scode = " vector[K] M;") + stanvar(diag(2), "V", scode = " matrix[K, K] V;") sdata <- standata(count ~ Trt + zBase, epilepsy, prior = bprior, stanvars = stanvars) expect_equal(sdata$M, rep(0, 2)) expect_equal(sdata$V, diag(2)) }) test_that("addition arguments 'vint' and 'vreal' work correctly", { dat <- data.frame(size = 10, y = sample(0:10, 20, TRUE), x = rnorm(20)) beta_binomial2 <- custom_family( "beta_binomial2", dpars = c("mu", "tau"), links = c("logit", "log"), lb = c(NA, 0), type = "int", vars = c("vint1[n]", "vreal1[n]") ) sdata <- standata( y | vint(size) + vreal(x, size) ~ 1, data = dat, family = beta_binomial2, ) expect_equal(sdata$vint1, as.array(rep(10, 20))) expect_equal(sdata$vreal1, as.array(dat$x)) expect_equal(sdata$vreal2, as.array(rep(10, 20))) }) test_that("reserved variables 'Intercept' is handled correctly", { dat <- data.frame(y = 1:10) expect_warning( sdata <- standata(y ~ 0 + intercept, dat), "Reserved variable name 'intercept' is deprecated." ) expect_true(all(sdata$X[, "intercept"] == 1)) sdata <- standata(y ~ 0 + Intercept, dat) expect_true(all(sdata$X[, "Intercept"] == 1)) }) test_that("data for multinomial and dirichlet models is correct", { N <- 15 dat <- as.data.frame(rdirichlet(N, c(3, 2, 1))) names(dat) <- c("y1", "y2", "y3") dat$t1 <- round(dat$y1 * rpois(N, 10)) dat$t2 <- round(dat$y2 * rpois(N, 10)) dat$t3 <- round(dat$y3 * rpois(N, 10)) dat$x <- rnorm(N) dat$y <- with(dat, cbind(y1, y2, y3)) dat$t <- with(dat, cbind(t1, t2, t3)) dat$size <- rowSums(dat$t) sdata <- standata(t | trials(size) ~ x, dat, multinomial()) expect_equal(sdata$trials, as.array(dat$size)) expect_equal(sdata$ncat, 3) expect_equal(sdata$Y, unname(dat$t)) sdata <- standata(y ~ x, data = dat, family = dirichlet()) expect_equal(sdata$ncat, 3) expect_equal(sdata$Y, unname(dat$y)) expect_error( standata(t | trials(10) ~ x, data = dat, family = multinomial()), "Number of trials does not match the number of events" ) expect_error(standata(t ~ x, data = dat, family = dirichlet()), "Response values in simplex models must sum to 1") }) test_that("standata handles cox models correctly", { data <- data.frame(y = rexp(100), x = rnorm(100), g = sample(1:3, 100, TRUE)) bform <- bf(y ~ x) bprior <- prior(dirichlet(3), sbhaz) sdata <- standata(bform, data, brmsfamily("cox"), prior = bprior) expect_equal(dim(sdata$Zbhaz), c(100, 5)) expect_equal(dim(sdata$Zcbhaz), c(100, 5)) expect_equal(sdata$con_sbhaz, as.array(rep(3, 5))) bform <- bf(y | bhaz(df = 6) ~ x) sdata <- standata(bform, data, brmsfamily("cox")) expect_equal(dim(sdata$Zbhaz), c(100, 6)) expect_equal(dim(sdata$Zcbhaz), c(100, 6)) bform <- bf(y | bhaz(gr = g) ~ x) bprior <- prior(dirichlet(3), "sbhaz", group = 2) sdata <- standata(bform, data, family = brmsfamily("cox"), prior = bprior) expect_equal(sdata$ngrbhaz, 3) expect_equivalent(sdata$Jgrbhaz, data$g) con_mat <- rbind(rep(1, 5), rep(3, 5), rep(1, 5)) expect_equivalent(sdata$con_sbhaz, con_mat) }) test_that("standata handles addition term 'rate' is correctly", { data <- data.frame(y = rpois(10, 1), x = rnorm(10), time = 1:10) sdata <- standata(y | rate(time) ~ x, data, poisson()) expect_equal(sdata$denom, as.array(data$time)) }) test_that("standata handles grouped ordinal thresholds correctly", { dat <- data.frame( y = c(1:5, 1:4, 4), gr = rep(c("a", "b"), each = 5), th = rep(5:6, each = 5), x = rnorm(10) ) # thresholds without a grouping factor sdata <- standata(y ~ x, dat, cumulative()) expect_equal(sdata$nthres, 4) sdata <- standata(y | thres(5) ~ x, dat, cumulative()) expect_equal(sdata$nthres, 5) expect_error( standata(y | thres(th) ~ x, dat, cumulative()), "Number of thresholds needs to be a single value" ) # thresholds with a grouping factor sdata <- standata(y | thres(th, gr) ~ x, dat, cumulative()) expect_equal(sdata$nthres, as.array(c(5, 6))) expect_equal(sdata$ngrthres, 2) expect_equal(unname(sdata$Jthres[1, ]), c(1, 5)) expect_equal(unname(sdata$Jthres[10, ]), c(6, 11)) sdata <- standata(y | thres(gr = gr) ~ x, dat, cumulative()) expect_equal(sdata$nthres, as.array(c(4, 3))) expect_equal(sdata$ngrthres, 2) sdata <- standata(y | thres(6, gr = gr) ~ x, dat, cumulative()) expect_equal(sdata$nthres, as.array(c(6, 6))) expect_equal(sdata$ngrthres, 2) }) test_that("information for threading is handled correctly", { dat <- data.frame(y = 1:10) sdata <- standata(y ~ 1, dat, threads = threading(2, grainsize = 3)) expect_equal(sdata$grainsize, 3) }) test_that("variables in data2 can be used in population-level effects", { dat <- data.frame(y = 1:10, x1 = rnorm(10), x2 = rnorm(10), x3 = rnorm(10)) foo <- function(..., idx = NULL) { out <- cbind(...) if (!is.null(idx)) { out <- out[, idx, drop = FALSE] } out } sdata <- standata(y ~ foo(x1, x2, x3, idx = id), data = dat, data2 = list(id = c(3, 1))) target <- c("Intercept", "foox1x2x3idxEQidx3", "foox1x2x3idxEQidx1") expect_equal(colnames(sdata$X), target) expect_equivalent(sdata$X[, 2], dat$x3) expect_equivalent(sdata$X[, 3], dat$x1) }) test_that("NAs are allowed in unused interval censoring variables", { dat <- data.frame(y = rnorm(10), ce = c(1, rep(2, 9))) dat$y2 <- dat$y + 2 dat$y2[1] <- NA sdata <- standata(y | cens(ce, y2 = y2) ~ 1, data = dat) expect_equal(sdata$N, 10L) expect_equal(sdata$rcens[1], 0) dat$ce[1] <- 2 expect_error( standata(y | cens(ce, y2 = y2) ~ 1, data = dat), "'y2' should not be NA for interval censored observations" ) }) test_that("drop_unused_factor levels works correctly", { dat <- data.frame(y = rnorm(10), x = factor(c("a", "b"), levels = c("a", "b", "c"))) # should drop level "c" sdata <- standata(y ~ x, data = dat) expect_equal(colnames(sdata$X), c("Intercept", "xb")) # should not drop level "c" sdata <- standata(y ~ x, data = dat, drop_unused_levels = FALSE) expect_equal(colnames(sdata$X), c("Intercept", "xb", "xc")) })