# most tests of prior related stuff can be found in tests.stancode.R context("Tests for prior generating functions") test_that("default_prior finds all classes for which priors can be specified", { expect_equal( sort( default_prior( count ~ zBase * Trt + (1|patient) + (1+Trt|visit), data = epilepsy, family = "poisson" )$class ), sort(c(rep("b", 4), c("cor", "cor"), "Intercept", rep("sd", 6))) ) expect_equal( sort( default_prior( rating ~ treat + period + cse(carry), data = inhaler, family = sratio(threshold = "equidistant") )$class ), sort(c(rep("b", 4), "delta", rep("Intercept", 1))) ) }) test_that("set_prior allows arguments to be vectors", { bprior <- set_prior("normal(0, 2)", class = c("b", "sd")) expect_is(bprior, "brmsprior") expect_equal(bprior$prior, rep("normal(0, 2)", 2)) expect_equal(bprior$class, c("b", "sd")) }) test_that("print for class brmsprior works correctly", { expect_output(print(set_prior("normal(0,1)")), fixed = TRUE, "b ~ normal(0,1)") expect_output(print(set_prior("normal(0,1)", coef = "x")), "b_x ~ normal(0,1)", fixed = TRUE) expect_output(print(set_prior("cauchy(0,1)", class = "sd", group = "x")), "sd_x ~ cauchy(0,1)", fixed = TRUE) expect_output(print(set_prior("target += normal_lpdf(x | 0,1))", check = FALSE)), "target += normal_lpdf(x | 0,1))", fixed = TRUE) }) test_that("default_prior returns correct nlpar names for random effects pars", { # reported in issue #47 dat <- data.frame(y = rnorm(10), x = rnorm(10), g = rep(1:2, 5)) bform <- bf(y ~ a - b^x, a + b ~ (1+x|g), nl = TRUE) gp <- default_prior(bform, data = dat) expect_equal(sort(unique(gp$nlpar)), c("", "a", "b")) }) test_that("default_prior returns correct fixed effect names for GAMMs", { dat <- data.frame(y = rnorm(10), x = rnorm(10), z = rnorm(10), g = rep(1:2, 5)) prior <- default_prior(y ~ z + s(x) + (1|g), data = dat) expect_equal(prior[prior$class == "b", ]$coef, c("", "sx_1", "z")) prior <- default_prior(bf(y ~ lp, lp ~ z + s(x) + (1|g), nl = TRUE), data = dat) expect_equal(prior[prior$class == "b", ]$coef, c("", "Intercept", "sx_1", "z")) }) test_that("default_prior returns correct prior names for auxiliary parameters", { dat <- data.frame(y = rnorm(10), x = rnorm(10), z = rnorm(10), g = rep(1:2, 5)) bform <- bf(y ~ 1, phi ~ z + (1|g), family = Beta()) prior <- default_prior(bform, data = dat) prior <- prior[prior$dpar == "phi", ] pdata <- data.frame(class = c("b", "b", "Intercept", rep("sd", 3)), coef = c("", "z", "", "", "", "Intercept"), group = c(rep("", 4), "g", "g"), stringsAsFactors = FALSE) pdata <- pdata[with(pdata, order(class, group, coef)), ] expect_equivalent(prior[, c("class", "coef", "group")], pdata) }) test_that("default_prior returns correct priors for multivariate models", { dat <- data.frame(y1 = rnorm(10), y2 = c(1, rep(1:3, 3)), x = rnorm(10), g = rep(1:2, 5)) bform <- bf(mvbind(y1, y2) ~ x + (x|ID1|g)) + set_rescor(TRUE) # check global priors prior <- default_prior(bform, dat, family = gaussian()) expect_equal(prior[prior$resp == "y1" & prior$class == "b", "coef"], c("", "x")) expect_equal(prior[prior$class == "rescor", "prior"], "lkj(1)") # check family and autocor specific priors family <- list(gaussian, Beta()) bform <- bf(y1 ~ x + (x|ID1|g) + ar()) + bf(y2 ~ 1) prior <- default_prior(bform, dat, family = family) expect_true(any(with(prior, class == "sigma" & resp == "y1"))) expect_true(any(with(prior, class == "ar" & resp == "y1"))) expect_true(any(with(prior, class == "phi" & resp == "y2"))) expect_true(!any(with(prior, class == "ar" & resp == "y2"))) }) test_that("default_prior returns correct priors for categorical models", { # check global priors dat <- data.frame(y2 = c(1, rep(1:3, 3)), x = rnorm(10), g = rep(1:2, 5)) prior <- default_prior(y2 ~ x + (x|ID1|g), data = dat, family = categorical()) expect_equal(prior[prior$dpar == "mu2" & prior$class == "b", "coef"], c("", "x")) }) test_that("set_prior alias functions produce equivalent results", { expect_equal(set_prior("normal(0, 1)", class = "sd"), prior(normal(0, 1), class = sd)) expect_equal(set_prior("normal(0, 1)", class = "sd", nlpar = "a"), prior(normal(0, 1), class = "sd", nlpar = a)) expect_equal(set_prior("normal(0, 1)", class = "sd", nlpar = "a"), prior_(~normal(0, 1), class = ~sd, nlpar = quote(a))) expect_equal(set_prior("normal(0, 1)", class = "sd"), prior_string("normal(0, 1)", class = "sd")) }) test_that("external interface of validate_prior works correctly", { prior1 <- prior(normal(0,10), class = b) + prior(cauchy(0,2), class = sd) prior1 <- validate_prior( prior1, count ~ zAge + zBase * Trt + (1|patient), data = epilepsy, family = poisson() ) expect_true(all(c("b", "Intercept", "sd") %in% prior1$class)) expect_equal(nrow(prior1), 9) }) test_that("overall intercept priors are adjusted for the intercept", { dat <- data.frame(y = rep(c(1, 3), each = 5), off = 10) prior1 <- default_prior(y ~ 1 + offset(off), dat) int_prior <- prior1$prior[prior1$class == "Intercept"] expect_equal(int_prior, "student_t(3, -8, 2.5)") }) test_that("as.brmsprior works correctly", { dat <- data.frame(prior = "normal(0,1)", x = "test", coef = c("a", "b")) bprior <- as.brmsprior(dat) expect_equal(bprior$prior, rep("normal(0,1)", 2)) expect_equal(bprior$class, rep("b", 2)) expect_equal(bprior$coef, c("a", "b")) expect_equal(bprior$x, NULL) expect_equal(bprior$lb, rep(NA_character_, 2)) })