test_that("unname_df()", { x <- unname_df(tibble::tibble(x = c(a = 1, b = 2), y = c(c = 3, d = 4))) expect_null(names(x$x)) expect_null(names(x$y)) }) test_that("zero_pad_integers", { expect_equal( zero_pad_integers(c(1L, 0L, 2L, 5L, 7L)), c("1", "0", "2", "5", "7") ) expect_equal( zero_pad_integers(c(1L, 10L, 0L, 2L, 5L, 7L)), c("01", "10", "00", "02", "05", "07") ) expect_equal( zero_pad_integers(c(1L, 10L, 0L, 207L, 2L, 5L, 7L)), c("001", "010", "000", "207", "002", "005", "007") ) }) test_that("brm_has_subgroup() on regular data", { data <- brm_data( data = tibble::tibble( CHG = c(1, 2), TIME = c("x", "y"), BASELINE = c(2, 3), GROUP = c("x", "y"), USUBJID = c("x", "y"), SUBGROUP = c("x", "y") ), outcome = "CHG", group = "GROUP", subgroup = "SUBGROUP", time = "TIME", baseline = "BASELINE", patient = "USUBJID", reference_group = "x", reference_subgroup = "x" ) template <- list( data = data, intercept = FALSE, baseline = FALSE, baseline_subgroup = FALSE, baseline_subgroup_time = FALSE, baseline_time = FALSE, group = FALSE, group_subgroup = FALSE, group_subgroup_time = FALSE, group_time = FALSE, subgroup = FALSE, subgroup_time = FALSE, time = FALSE, check_rank = FALSE ) with_subgroup <- c( "baseline_subgroup", "baseline_subgroup_time", "group_subgroup", "group_subgroup_time", "subgroup", "subgroup_time" ) for (term in setdiff(names(template), c("data", "check_rank"))) { args <- template args[[term]] <- TRUE formula <- do.call(what = brm_formula, args = args) expect_equal( brm_has_subgroup(data = data, formula = formula), term %in% with_subgroup ) } }) test_that("brm_has_subgroup() on archetype", { data <- brm_simulate_outline( n_group = 2, n_patient = 100, n_time = 3, rate_dropout = 0, rate_lapse = 0 ) |> dplyr::mutate(response = rnorm(n = dplyr::n())) |> brm_data_change() |> brm_simulate_continuous(names = c("biomarker1", "biomarker2")) |> brm_simulate_categorical( names = c("status1", "status2"), levels = c("present", "absent") ) archetype <- brm_archetype_successive_cells(data) formula <- brm_formula(archetype) expect_false(brm_has_subgroup(archetype, formula)) data <- brm_simulate_outline( n_group = 2, n_subgroup = 3, n_patient = 100, n_time = 3, rate_dropout = 0, rate_lapse = 0 ) |> dplyr::mutate(response = rnorm(n = dplyr::n())) |> brm_data_change() |> brm_simulate_continuous(names = c("biomarker1", "biomarker2")) |> brm_simulate_categorical( names = c("status1", "status2"), levels = c("present", "absent") ) archetype <- brm_archetype_successive_cells(data) formula <- brm_formula(archetype) expect_true(brm_has_subgroup(archetype, formula)) }) test_that("brm_has_nuisance() on regular data", { data <- brm_data( data = tibble::tibble( CHG = c(1, 2), TIME = c("x", "y"), BASELINE = c(2, 3), GROUP = c("x", "y"), USUBJID = c("x", "y"), SUBGROUP = c("x", "y"), FACTOR = c("x", "y") ), outcome = "CHG", group = "GROUP", subgroup = "SUBGROUP", time = "TIME", baseline = "BASELINE", patient = "USUBJID", reference_group = "x", reference_subgroup = "x", covariates = "FACTOR" ) template <- list( data = data, intercept = FALSE, baseline = FALSE, baseline_subgroup = FALSE, baseline_subgroup_time = FALSE, baseline_time = FALSE, covariates = FALSE, group = FALSE, group_subgroup = FALSE, group_subgroup_time = FALSE, group_time = FALSE, subgroup = FALSE, subgroup_time = FALSE, time = FALSE, check_rank = FALSE ) with_nuisance <- c( "baseline", "baseline_subgroup", "baseline_subgroup_time", "baseline_time", "covariates" ) for (term in setdiff(names(template), c("data", "check_rank"))) { args <- template args[[term]] <- TRUE formula <- do.call(what = brm_formula, args = args) expect_equal( brm_has_nuisance(data = data, formula = formula), term %in% with_nuisance ) } }) test_that("brm_has_nuisance() on archetype", { data <- brm_simulate_outline( n_group = 2, n_patient = 100, n_time = 3, rate_dropout = 0, rate_lapse = 0 ) |> dplyr::mutate(response = rnorm(n = dplyr::n())) archetype <- brm_archetype_successive_cells(data) formula <- brm_formula(archetype) expect_false(brm_has_nuisance(archetype, formula)) data <- brm_simulate_outline( n_group = 2, n_patient = 100, n_time = 3, rate_dropout = 0, rate_lapse = 0 ) |> dplyr::mutate(response = rnorm(n = dplyr::n())) |> brm_data_change() |> brm_simulate_continuous(names = c("biomarker1", "biomarker2")) |> brm_simulate_categorical( names = c("status1", "status2"), levels = c("present", "absent") ) archetype <- brm_archetype_successive_cells(data) formula <- brm_formula(archetype) expect_true(brm_has_nuisance(archetype, formula)) })