R Under development (unstable) (2025-01-09 r87552 ucrt) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview > # * https://testthat.r-lib.org/articles/special-files.html > > library(testthat) > library(bnns) > > test_check("bnns") SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1). Chain 1: Chain 1: Gradient evaluation took 8.8e-05 seconds Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.88 seconds. Chain 1: Adjust your expectations accordingly! Chain 1: Chain 1: Chain 1: WARNING: No variance estimation is Chain 1: performed for num_warmup < 20 Chain 1: Chain 1: Iteration: 1 / 10 [ 10%] (Warmup) Chain 1: Iteration: 2 / 10 [ 20%] (Warmup) Chain 1: Iteration: 3 / 10 [ 30%] (Warmup) Chain 1: Iteration: 4 / 10 [ 40%] (Warmup) Chain 1: Iteration: 5 / 10 [ 50%] (Warmup) Chain 1: Iteration: 6 / 10 [ 60%] (Sampling) Chain 1: Iteration: 7 / 10 [ 70%] (Sampling) Chain 1: Iteration: 8 / 10 [ 80%] (Sampling) Chain 1: Iteration: 9 / 10 [ 90%] (Sampling) Chain 1: Iteration: 10 / 10 [100%] (Sampling) Chain 1: Chain 1: Elapsed Time: 0 seconds (Warm-up) Chain 1: 0 seconds (Sampling) Chain 1: 0 seconds (Total) Chain 1: Call: bnns.default(formula = y ~ -1 + x1 + x2, data = df, L = 1, nodes = 2, act_fn = 5, out_act_fn = 1, iter = 10, warmup = 5, chains = 1, normalize = FALSE) Data Summary: Number of observations: 10 Number of features: 2 Network Architecture: Number of hidden layers: 1 Nodes per layer: 2 Activation functions: 5 Output activation function: 1 Posterior Summary (Key Parameters): mean se_mean sd 2.5% 25% 50% w_out[1] -1.0359014 0.05729695 0.1071139 -1.15068141 -1.10050597 -1.02561473 w_out[2] 0.1227901 0.08070459 0.1508733 -0.04143046 -0.01264148 0.12676218 b_out 0.1520709 0.24501526 0.4580442 -0.10366284 -0.10366284 -0.04376424 sigma 0.7587657 0.04215803 0.0788124 0.63758814 0.74926020 0.79893127 75% 97.5% n_eff Rhat w_out[1] -1.02561473 -0.8869252 3.49485 0.9037670 w_out[2] 0.27222963 0.2722296 3.49485 0.8015336 b_out 0.04750355 0.8722971 3.49485 0.9052667 sigma 0.81022854 0.8102285 3.49485 1.5081484 Model Fit Information: Iterations: 10 Warmup: 5 Thinning: 1 Chains: 1 Predictive Performance: RMSE (training): 0.7591902 MAE (training): 0.680774 Notes: Check convergence diagnostics for parameters with high R-hat values. SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1). Chain 1: Chain 1: Gradient evaluation took 7.5e-05 seconds Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.75 seconds. Chain 1: Adjust your expectations accordingly! Chain 1: Chain 1: Chain 1: WARNING: No variance estimation is Chain 1: performed for num_warmup < 20 Chain 1: Chain 1: Iteration: 1 / 10 [ 10%] (Warmup) Chain 1: Iteration: 2 / 10 [ 20%] (Warmup) Chain 1: Iteration: 3 / 10 [ 30%] (Warmup) Chain 1: Iteration: 4 / 10 [ 40%] (Warmup) Chain 1: Iteration: 5 / 10 [ 50%] (Warmup) Chain 1: Iteration: 6 / 10 [ 60%] (Sampling) Chain 1: Iteration: 7 / 10 [ 70%] (Sampling) Chain 1: Iteration: 8 / 10 [ 80%] (Sampling) Chain 1: Iteration: 9 / 10 [ 90%] (Sampling) Chain 1: Iteration: 10 / 10 [100%] (Sampling) Chain 1: Chain 1: Elapsed Time: 0 seconds (Warm-up) Chain 1: 0 seconds (Sampling) Chain 1: 0 seconds (Total) Chain 1: SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1). Chain 1: Chain 1: Gradient evaluation took 9.1e-05 seconds Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.91 seconds. Chain 1: Adjust your expectations accordingly! Chain 1: Chain 1: Chain 1: WARNING: No variance estimation is Chain 1: performed for num_warmup < 20 Chain 1: Chain 1: Iteration: 1 / 10 [ 10%] (Warmup) Chain 1: Iteration: 2 / 10 [ 20%] (Warmup) Chain 1: Iteration: 3 / 10 [ 30%] (Warmup) Chain 1: Iteration: 4 / 10 [ 40%] (Warmup) Chain 1: Iteration: 5 / 10 [ 50%] (Warmup) Chain 1: Iteration: 6 / 10 [ 60%] (Sampling) Chain 1: Iteration: 7 / 10 [ 70%] (Sampling) Chain 1: Iteration: 8 / 10 [ 80%] (Sampling) Chain 1: Iteration: 9 / 10 [ 90%] (Sampling) Chain 1: Iteration: 10 / 10 [100%] (Sampling) Chain 1: Chain 1: Elapsed Time: 0 seconds (Warm-up) Chain 1: 0 seconds (Sampling) Chain 1: 0 seconds (Total) Chain 1: Call: bnns.default(formula = y ~ -1 + x1 + x2, data = df, L = 1, nodes = 2, act_fn = 5, out_act_fn = 2, iter = 10, warmup = 5, chains = 1) Data Summary: Number of observations: 10 Number of features: 2 Network Architecture: Number of hidden layers: 1 Nodes per layer: 2 Activation functions: 5 Output activation function: 2 Posterior Summary (Key Parameters): mean se_mean sd 2.5% 25% 50% w_out[1] -0.1014488 0.09208671 0.1721517 -0.3414034 -0.1392813 -0.1115307 w_out[2] -0.5491061 0.41717333 0.7798854 -1.2210193 -1.1364886 -0.9775488 b_out -0.2200450 0.14687893 0.2745831 -0.6266570 -0.2451801 -0.1257945 75% 97.5% n_eff Rhat w_out[1] 0.05371478 0.05371478 3.49485 0.7141784 w_out[2] 0.29945935 0.29945935 3.49485 0.8920884 b_out -0.12579455 0.04644922 3.49485 0.7408003 Model Fit Information: Iterations: 10 Warmup: 5 Thinning: 1 Chains: 1 Predictive Performance: Setting levels: control = 0, case = 1 Setting direction: controls < cases Confusion matrix (training with 0.5 cutoff): 4 4 2 0 Accuracy (training with 0.5 cutoff): 0.4 AUC (training): 0.5833333 Notes: Check convergence diagnostics for parameters with high R-hat values. SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1). Chain 1: Chain 1: Gradient evaluation took 9.8e-05 seconds Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.98 seconds. Chain 1: Adjust your expectations accordingly! Chain 1: Chain 1: Chain 1: WARNING: No variance estimation is Chain 1: performed for num_warmup < 20 Chain 1: Chain 1: Iteration: 1 / 10 [ 10%] (Warmup) Chain 1: Iteration: 2 / 10 [ 20%] (Warmup) Chain 1: Iteration: 3 / 10 [ 30%] (Warmup) Chain 1: Iteration: 4 / 10 [ 40%] (Warmup) Chain 1: Iteration: 5 / 10 [ 50%] (Warmup) Chain 1: Iteration: 6 / 10 [ 60%] (Sampling) Chain 1: Iteration: 7 / 10 [ 70%] (Sampling) Chain 1: Iteration: 8 / 10 [ 80%] (Sampling) Chain 1: Iteration: 9 / 10 [ 90%] (Sampling) Chain 1: Iteration: 10 / 10 [100%] (Sampling) Chain 1: Chain 1: Elapsed Time: 0.001 seconds (Warm-up) Chain 1: 0 seconds (Sampling) Chain 1: 0.001 seconds (Total) Chain 1: Call: bnns.default(formula = y ~ -1 + x1 + x2, data = df, L = 1, nodes = 2, act_fn = 5, out_act_fn = 3, iter = 10, warmup = 5, chains = 1) Data Summary: Number of observations: 10 Number of features: 2 Network Architecture: Number of hidden layers: 1 Nodes per layer: 2 Activation functions: 5 Output activation function: 3 Posterior Summary (Key Parameters): mean se_mean sd 2.5% 25% 50% w_out[1,1] -0.1158985 0.1396727 0.2611114 -0.3474307 -0.2812102 -0.2354677 w_out[1,2] 0.2454100 0.1279610 0.2392170 0.0065396 0.1110885 0.2087334 w_out[1,3] -0.1994521 0.2343021 0.4380165 -0.8026494 -0.2674540 -0.2671008 w_out[2,1] 0.3994595 0.5382460 1.0062249 -1.1636857 0.3954920 0.8907506 w_out[2,2] 0.8834425 0.9162438 1.7128736 -1.3991712 -0.3361378 1.8584841 w_out[2,3] 0.3543370 0.4926794 0.9210404 -0.5534430 -0.3204092 0.2911492 b_out[1] 0.4750640 0.2122317 0.3967569 -0.1253712 0.4192757 0.6493778 b_out[2] 1.1119310 0.3147135 0.5883417 0.2282603 1.0433232 1.2641093 b_out[3] -0.3925753 0.1732960 0.3239685 -0.8247176 -0.5541784 -0.3516500 75% 97.5% n_eff Rhat w_out[1,1] 0.01023817 0.25458596 3.49485 0.7806791 w_out[1,2] 0.28594182 0.59232082 3.49485 0.9786576 w_out[1,3] 0.18457894 0.21180579 3.49485 21.8403037 w_out[2,1] 0.94198149 1.08959911 3.49485 0.8957378 w_out[2,2] 2.07295215 2.31257528 3.49485 3.4800464 w_out[2,3] 0.61346549 1.65148005 3.49485 3.1659896 b_out[1] 0.66818468 0.80875070 3.49485 1.5615389 b_out[2] 1.48327696 1.61645084 3.49485 0.8426515 b_out[3] -0.16642896 -0.04890031 3.49485 0.7131206 Model Fit Information: Iterations: 10 Warmup: 5 Thinning: 1 Chains: 1 Predictive Performance: Log-loss (training): 0.9307171 AUC (training): 0.75 Notes: Check convergence diagnostics for parameters with high R-hat values. Setting levels: control = 0, case = 1 Setting direction: controls < cases [ FAIL 0 | WARN 0 | SKIP 0 | PASS 94 ] > > proc.time() user system elapsed 8.81 0.82 233.00