R Under development (unstable) (2025-11-17 r89032 ucrt) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > cat("Testing diag") Testing diag> library(bkmrhat) Loading required package: coda Diagnostics and parallel chain functioning for Bayesian kernel machine regression > set.seed(111) > dat <- bkmr::SimData(n = 50, M = 4) > y <- dat$y > Z <- dat$Z > X <- dat$X > set.seed(111) > > future::plan(strategy = future::sequential) > fitkm.list <- kmbayes_parallel(nchains=2, y = y, Z = Z, X = X, iter = 10, + verbose = FALSE, varsel = TRUE) Chain 1 Iteration: 2 (20% completed; 0.01118 secs elapsed) Iteration: 3 (30% completed; 0.01329 secs elapsed) Iteration: 4 (40% completed; 0.01483 secs elapsed) Iteration: 5 (50% completed; 0.01637 secs elapsed) Iteration: 6 (60% completed; 0.01798 secs elapsed) Iteration: 7 (70% completed; 0.0196 secs elapsed) Iteration: 8 (80% completed; 0.0212 secs elapsed) Iteration: 9 (90% completed; 0.0228 secs elapsed) Iteration: 10 (100% completed; 0.02466 secs elapsed) Chain 2 Iteration: 2 (20% completed; 0.00136 secs elapsed) Iteration: 3 (30% completed; 0.00306 secs elapsed) Iteration: 4 (40% completed; 0.00479 secs elapsed) Iteration: 5 (50% completed; 0.00655 secs elapsed) Iteration: 6 (60% completed; 0.00822 secs elapsed) Iteration: 7 (70% completed; 0.01002 secs elapsed) Iteration: 8 (80% completed; 0.01176 secs elapsed) Iteration: 9 (90% completed; 0.0134 secs elapsed) Iteration: 10 (100% completed; 0.01511 secs elapsed) > > kmbayes_diagnose(fitkm.list) Parallel chains Inference for the input samples (2 chains: each with iter = 10; warmup = 5): Q5 Q50 Q95 Mean SD Rhat Bulk_ESS Tail_ESS beta 1.9 1.9 2.0 1.9 0.1 1.04 10 10 lambda 5.4 7.7 10.0 7.9 1.7 3.09 10 10 r1 0.9 1.0 1.0 1.0 0.0 1.00 10 10 r2 0.0 0.4 1.0 0.4 0.4 1.00 10 10 r3 0.0 0.0 0.5 0.1 0.3 1.00 10 10 r4 0.0 0.0 0.5 0.1 0.3 1.00 10 10 sigsq.eps 0.3 0.5 0.7 0.5 0.2 1.62 10 10 For each parameter, Bulk_ESS and Tail_ESS are crude measures of effective sample size for bulk and tail quantities respectively (an ESS > 100 per chain is considered good), and Rhat is the potential scale reduction factor on rank normalized split chains (at convergence, Rhat <= 1.05). mean se_mean sd 2.5% 25% 50% 75% beta 1.93203617 0 0.05844528 1.8575739 1.8871790 1.9299827 1.9664661 lambda 7.88850451 0 1.70596830 5.1956802 7.3330689 7.6820911 9.4205228 r1 0.97274927 0 0.04044727 0.9143049 0.9338009 0.9961445 1.0000000 r2 0.41137951 0 0.44684643 0.0000000 0.0000000 0.3522992 0.7045984 r3 0.09116281 0 0.28828213 0.0000000 0.0000000 0.0000000 0.0000000 r4 0.08554571 0 0.27051928 0.0000000 0.0000000 0.0000000 0.0000000 sigsq.eps 0.49655473 0 0.17382763 0.2924886 0.3548132 0.4790162 0.6198787 97.5% n_eff Rhat valid Q5 Q50 Q95 beta 2.0261081 5 1.044932 1 1.8608397 1.9299827 2.0198896 lambda 10.0000000 5 3.091743 1 5.4201042 7.6820911 10.0000000 r1 1.0000000 5 1.000000 1 0.9143049 0.9961445 1.0000000 r2 1.0000000 5 1.000000 1 0.0000000 0.3522992 1.0000000 r3 0.7065118 5 1.000000 1 0.0000000 0.0000000 0.5013955 r4 0.6629792 5 1.000000 1 0.0000000 0.0000000 0.4705014 sigsq.eps 0.7396350 5 1.620442 1 0.3016312 0.4790162 0.7299063 MCSE_Q2.5 MCSE_Q25 MCSE_Q50 MCSE_Q75 MCSE_Q97.5 MCSE_SD Bulk_ESS beta NA NA NA NA NA NA 10 lambda NA NA NA NA NA NA 10 r1 NA NA NA NA NA NA 10 r2 NA NA NA NA NA NA 10 r3 NA NA NA NA NA NA 10 r4 NA NA NA NA NA NA 10 sigsq.eps NA NA NA NA NA NA 10 Tail_ESS beta 10 lambda 10 r1 10 r2 10 r3 10 r4 10 sigsq.eps 10 > combobj = comb_bkmrfits(fitkm.list) > stopifnot(inherits(combobj, "bkmrfit")) > kmbayes_diagnose(combobj) Single chain Inference for the input samples (1 chains: each with iter = 20; warmup = 10): Q5 Q50 Q95 Mean SD Rhat Bulk_ESS Tail_ESS beta 1.9 1.9 2.0 1.9 0.1 0.97 5 5 lambda 5.4 7.7 10.0 7.9 1.7 2.46 5 10 r1 0.9 1.0 1.0 1.0 0.0 3.38 5 10 r2 0.0 0.4 1.0 0.4 0.4 3.02 5 10 r3 0.0 0.0 0.5 0.1 0.3 1.00 5 5 r4 0.0 0.0 0.5 0.1 0.3 1.00 5 5 sigsq.eps 0.3 0.5 0.7 0.5 0.2 2.05 5 5 For each parameter, Bulk_ESS and Tail_ESS are crude measures of effective sample size for bulk and tail quantities respectively (an ESS > 100 per chain is considered good), and Rhat is the potential scale reduction factor on rank normalized split chains (at convergence, Rhat <= 1.05). mean se_mean sd 2.5% 25% 50% beta 1.93203617 0.02613752 0.05844528 1.8575739 1.8871790 1.9299827 lambda 7.88850451 0.76293222 1.70596830 5.1956802 7.3330689 7.6820911 r1 0.97274927 0.01808857 0.04044727 0.9143049 0.9338009 0.9961445 r2 0.41137951 0.19983580 0.44684643 0.0000000 0.0000000 0.3522992 r3 0.09116281 0.12892369 0.28828213 0.0000000 0.0000000 0.0000000 r4 0.08554571 0.12097990 0.27051928 0.0000000 0.0000000 0.0000000 sigsq.eps 0.49655473 0.07773808 0.17382763 0.2924886 0.3548132 0.4790162 75% 97.5% n_eff Rhat valid Q5 Q50 beta 1.9664661 2.0261081 10 0.972567 1 1.8608397 1.9299827 lambda 9.4205228 10.0000000 6 2.460039 1 5.4201042 7.6820911 r1 1.0000000 1.0000000 4 3.379189 1 0.9143049 0.9961445 r2 0.7045984 1.0000000 4 3.024547 1 0.0000000 0.3522992 r3 0.0000000 0.7065118 10 1.000000 1 0.0000000 0.0000000 r4 0.0000000 0.6629792 10 1.000000 1 0.0000000 0.0000000 sigsq.eps 0.6198787 0.7396350 4 2.048600 1 0.3016312 0.4790162 Q95 MCSE_Q2.5 MCSE_Q25 MCSE_Q50 MCSE_Q75 MCSE_Q97.5 beta 2.0198896 0.01409649 0.03553638 0.02968535 0.03965407 0.04522741 lambda 10.0000000 1.12273599 1.35541747 0.23268148 1.15895443 NA r1 1.0000000 0.00000000 0.03899202 0.04284754 NA NA r2 1.0000000 0.00000000 0.00000000 0.35229918 0.50000000 NA r3 0.5013955 0.00000000 0.00000000 0.00000000 0.00000000 0.45581407 r4 0.4705014 0.00000000 0.00000000 0.00000000 0.00000000 0.42772854 sigsq.eps 0.7299063 0.03336147 0.04408088 0.12427623 0.16730857 0.07537116 MCSE_SD Bulk_ESS Tail_ESS beta 0.01968211 5 5 lambda 0.57450427 5 10 r1 0.01362108 5 10 r2 0.15048063 5 10 r3 0.09708229 5 5 r4 0.09110045 5 5 sigsq.eps 0.05853843 5 5 > closeAllConnections() > > proc.time() user system elapsed 7.15 0.37 7.51