library(bkmrhat) set.seed(111) dat <- bkmr::SimData(n = 50, M = 5, ind=1:3, Zgen="realistic") y <- dat$y Z <- dat$Z X <- cbind(dat$X, rnorm(50)) # run 10 initial iterations for a model with only 2 exposures Z2 = Z kmfitbma.start <- suppressWarnings(bkmr::kmbayes(y = y, Z = Z2, X = X, iter = 10, verbose = FALSE, varsel = TRUE, est.h = TRUE)) # run 20 additional iterations moreiterations = suppressWarnings(kmbayes_continue(kmfitbma.start, iter=20)) res = kmbayes_diag(moreiterations) #bkmr::TracePlot(moreiterations, par="r", comp=5) #bkmr::TracePlot(moreiterations, par="beta", comp=1) #bkmr::TracePlot(moreiterations, par="h", comp=50) stopifnot(kmfitbma.start$itermedian(dat$y)) fitty1 = suppressWarnings(bkmr::kmbayes(y=y,Z=Z,X=X, est.h=TRUE, iter=5, family="binomial")) # do some diagnostics here to see if 1000 iterations (default) is enough # add 3000 additional iterations fitty2 = suppressWarnings(kmbayes_continue(fitty1, iter=5)) stopifnot(ncol(fitty1$ystar[,1]) %in% ncol(fitty2$ystar[,1])) # force old version kmfitbma.start2 = kmfitbma.start kmfitbma.start2$delta = kmfitbma.start2$delta*0 moreiterations = suppressWarnings(kmbayes_continue(kmfitbma.start2, iter=20)) res = kmbayes_diag(moreiterations)