context("Wavelet clustering (wclust)") # Setup variables ===== # Sample wavelets t1 <- cbind(1:100, sin(seq(0, 10 * 2 * pi, length.out = 100))) t2 <- cbind(1:100, sin(seq(0, 10 * 2 * pi, length.out = 100) + 0.1 * pi)) t3 <- cbind(1:100, rnorm(100)) # white noise # Compute wavelet spectra wt.t1 <- wt(t1) wt.t2 <- wt(t2) wt.t3 <- wt(t3) # Store all wavelet spectra into array w.arr <- array(dim = c(3, NROW(wt.t1$wave), NCOL(wt.t1$wave))) w.arr[1, , ] <- wt.t1$wave w.arr[2, , ] <- wt.t2$wave w.arr[3, , ] <- wt.t3$wave # Tests ========== test_that("Basic test of wclust without progress bar", { # Compute dissimilarity and distance matrices c <- wclust(w.arr, quiet = TRUE) expect_true(is.matrix(c$diss.mat)) expect_equal(dim(c$diss.mat), c(3,3)) expect_equal(class(c$dist.mat), "dist") }) test_that("Progressbar should not cause errors", { expect_output( # Compute dissimilarity and distance matrices out <- wclust(w.arr), regexp = "\\|=+=\\| 100%" ) })