context("MANHATTAN") test_that("snp_manhattan() works with unordered data", { test <- snp_attachExtdata() G <- test$genotypes gwas <- big_univLogReg(G, test$fam$affection - 1L) N <- ncol(G) CHR <- sort(rep_len(1:2, N)) POS <- 1:N * 1000 rand <- sample(N) # plot_grid( # snp_manhattan(gwas, CHR, POS, dist.sep.chrs = 0), # snp_manhattan(gwas[rand, ], CHR[rand], POS[rand], dist.sep.chrs = 0) # ) expect_same_plot <- function(p1, p2) { png1 <- ggplot2::ggsave(tempfile(fileext = ".png"), p1, width = 8, height = 6) png2 <- ggplot2::ggsave(tempfile(fileext = ".png"), p2, width = 8, height = 6) expect_identical(readBin(png1, what = raw(), n = 1e6), readBin(png2, what = raw(), n = 1e6)) } expect_failure(expect_same_plot(snp_manhattan(gwas, CHR, POS), snp_manhattan(gwas, CHR, POS, npoints = 500))) expect_same_plot(snp_manhattan(gwas, CHR, POS), snp_manhattan(gwas[rand, ], CHR[rand], POS[rand])) expect_same_plot(snp_manhattan(gwas, CHR, POS, npoints = 500), snp_manhattan(gwas[rand, ], CHR[rand], POS[rand], npoints = 500)) expect_same_plot(snp_manhattan(gwas, as.character(CHR), POS, npoints = 500), snp_manhattan(gwas[rand, ], as.character(CHR[rand]), POS[rand], npoints = 500)) })