test_that("find_unused_inputs identifies unused inputs correctly", { # Create sample events events <- data.frame( session_id = c("s1", "s1", "s2", "s2", "s3"), event_type = c("input", "input", "input", "login", "input"), input_id = c("btn1", "btn2", "btn1", NA, "btn3"), timestamp = as.POSIXct(c( "2023-01-01 10:00:00", "2023-01-01 10:01:00", "2023-01-01 10:02:00", "2023-01-01 10:03:00", "2023-01-01 10:04:00" )), stringsAsFactors = FALSE ) # Test with 50% threshold (btn3 should be unused) result <- find_unused_inputs(events, threshold = 0.5) expect_true(is.list(result)) expect_true(length(result) > 0) expect_true(any(sapply(result, function(x) x$input_id == "btn3"))) # Test with 0% threshold (no inputs should be unused) result_none <- find_unused_inputs(events, threshold = 0) expect_equal(length(result_none), 0) }) test_that("find_unused_inputs handles edge cases", { # Empty events empty_events <- data.frame( session_id = character(0), event_type = character(0), input_id = character(0), timestamp = as.POSIXct(character(0)), stringsAsFactors = FALSE ) result_empty <- find_unused_inputs(empty_events) expect_equal(length(result_empty), 0) # No input events no_input_events <- data.frame( session_id = c("s1", "s2"), event_type = c("login", "navigation"), input_id = c(NA, NA), timestamp = as.POSIXct(c("2023-01-01 10:00:00", "2023-01-01 10:01:00")), stringsAsFactors = FALSE ) result_no_input <- find_unused_inputs(no_input_events) expect_equal(length(result_no_input), 0) }) test_that("find_delayed_sessions calculates delays correctly", { # Create events with login and actions events <- data.frame( session_id = c("s1", "s1", "s2", "s2", "s3"), event_type = c("login", "input", "login", "navigation", "login"), timestamp = as.POSIXct(c( "2023-01-01 10:00:00", "2023-01-01 10:00:05", "2023-01-01 10:01:00", "2023-01-01 10:01:35", "2023-01-01 10:02:00" )), input_id = c(NA, "btn1", NA, NA, NA), navigation_id = c(NA, NA, NA, "page1", NA), stringsAsFactors = FALSE ) result <- find_delayed_sessions(events, threshold_seconds = 30) expect_true(is.list(result)) expect_true("total_sessions" %in% names(result)) expect_true("median_delay" %in% names(result)) expect_true("has_issues" %in% names(result)) expect_equal(result$total_sessions, 3) expect_equal(result$no_action_sessions, 1) # s3 has no actions }) test_that("find_delayed_sessions handles edge cases", { # No login events no_login_events <- data.frame( session_id = c("s1", "s2"), event_type = c("input", "navigation"), timestamp = as.POSIXct(c("2023-01-01 10:00:00", "2023-01-01 10:01:00")), stringsAsFactors = FALSE ) result_no_login <- find_delayed_sessions(no_login_events) expect_null(result_no_login) # Only login events (no actions) only_login_events <- data.frame( session_id = c("s1", "s2"), event_type = c("login", "login"), timestamp = as.POSIXct(c("2023-01-01 10:00:00", "2023-01-01 10:01:00")), stringsAsFactors = FALSE ) result_only_login <- find_delayed_sessions(only_login_events) expect_equal(result_only_login$no_action_sessions, 2) expect_true(result_only_login$has_issues) }) test_that("find_error_patterns identifies error patterns", { # Create events with errors events <- data.frame( session_id = c("s1", "s1", "s2", "s2", "s3", "s3"), event_type = c("input", "error", "input", "error", "error", "login"), error_message = c(NA, "timeout", NA, "timeout", "connection", NA), output_id = c(NA, "plot1", NA, "plot1", "plot2", NA), input_id = c("btn1", NA, "btn1", NA, NA, NA), timestamp = as.POSIXct(c( "2023-01-01 10:00:00", "2023-01-01 10:00:03", "2023-01-01 10:01:00", "2023-01-01 10:01:03", "2023-01-01 10:02:00", "2023-01-01 10:02:03" )), stringsAsFactors = FALSE ) result <- find_error_patterns(events, threshold_rate = 0.1) expect_true(is.list(result)) expect_true(length(result) > 0) # Should find timeout error pattern timeout_pattern <- result[[which(sapply(result, function(x) x$error_message == "timeout"))]] expect_equal(timeout_pattern$count, 2) expect_equal(timeout_pattern$sessions_affected, 2) expect_equal(timeout_pattern$associated_input, "btn1") }) test_that("find_error_patterns handles edge cases", { # No error events no_error_events <- data.frame( session_id = c("s1", "s2"), event_type = c("input", "navigation"), timestamp = as.POSIXct(c("2023-01-01 10:00:00", "2023-01-01 10:01:00")), stringsAsFactors = FALSE ) result_no_errors <- find_error_patterns(no_error_events) expect_equal(length(result_no_errors), 0) # Errors below threshold low_error_events <- data.frame( session_id = c("s1", "s2", "s3", "s4", "s5", "s6", "s7", "s8", "s9", "s10"), event_type = c("error", rep("login", 9)), error_message = c("rare_error", rep(NA, 9)), output_id = c("plot1", rep(NA, 9)), timestamp = as.POSIXct(paste("2023-01-01 10:0", 0:9, ":00", sep = "")), stringsAsFactors = FALSE ) result_low_errors <- find_error_patterns(low_error_events, threshold_rate = 0.2) expect_equal(length(result_low_errors), 0) }) test_that("find_navigation_dropoffs identifies underused pages", { # Create navigation events events <- data.frame( session_id = c("s1", "s1", "s2", "s2", "s3", "s4", "s5"), event_type = c( "navigation", "navigation", "navigation", "navigation", "navigation", "navigation", "login" ), navigation_id = c( "home", "rare_page", "home", "popular_page", "rare_page", "popular_page", NA ), timestamp = as.POSIXct(c( "2023-01-01 10:00:00", "2023-01-01 10:00:30", "2023-01-01 10:01:00", "2023-01-01 10:01:30", "2023-01-01 10:02:00", "2023-01-01 10:02:30", "2023-01-01 10:03:00" )), stringsAsFactors = FALSE ) result <- find_navigation_dropoffs(events, threshold = 0.5) expect_true(is.list(result)) expect_true(length(result) > 0) # rare_page should be flagged (2/5 sessions = 40% < 50% threshold) rare_page_found <- any(sapply(result, function(x) x$page == "rare_page")) expect_true(rare_page_found) }) test_that("find_navigation_dropoffs handles edge cases", { # No navigation events no_nav_events <- data.frame( session_id = c("s1", "s2"), event_type = c("input", "login"), timestamp = as.POSIXct(c("2023-01-01 10:00:00", "2023-01-01 10:01:00")), stringsAsFactors = FALSE ) result_no_nav <- find_navigation_dropoffs(no_nav_events) expect_equal(length(result_no_nav), 0) # All pages above threshold high_usage_events <- data.frame( session_id = c("s1", "s2", "s3", "s4"), event_type = rep("navigation", 4), navigation_id = c("page1", "page1", "page1", "page1"), timestamp = as.POSIXct(paste("2023-01-01 10:0", 0:3, ":00", sep = "")), stringsAsFactors = FALSE ) result_high_usage <- find_navigation_dropoffs(high_usage_events, threshold = 0.5) expect_equal(length(result_high_usage), 0) }) test_that("find_confusion_patterns identifies rapid input changes", { # Create events with rapid input changes in multiple sessions base_time <- as.POSIXct("2023-01-01 10:00:00") events <- data.frame( session_id = c(rep("s1", 6), rep("s2", 6)), event_type = c(rep("input", 12)), input_id = c(rep("confused_input", 12)), timestamp = c(base_time + c(0, 1, 2, 3, 4, 5), base_time + c(10, 11, 12, 13, 14, 15)), stringsAsFactors = FALSE ) result <- find_confusion_patterns(events, window_seconds = 10, min_changes = 5) expect_true(is.list(result)) expect_true(length(result) > 0) confused_input_found <- any(sapply(result, function(x) x$input_id == "confused_input")) expect_true(confused_input_found) }) test_that("find_confusion_patterns handles edge cases", { # No input events no_input_events <- data.frame( session_id = c("s1", "s2"), event_type = c("login", "navigation"), timestamp = as.POSIXct(c("2023-01-01 10:00:00", "2023-01-01 10:01:00")), stringsAsFactors = FALSE ) result_no_input <- find_confusion_patterns(no_input_events) expect_equal(length(result_no_input), 0) # Changes too slow base_time <- as.POSIXct("2023-01-01 10:00:00") slow_changes <- data.frame( session_id = rep("s1", 5), event_type = rep("input", 5), input_id = rep("slow_input", 5), timestamp = base_time + c(0, 30, 60, 90, 120), # 30 seconds apart stringsAsFactors = FALSE ) result_slow <- find_confusion_patterns(slow_changes, window_seconds = 10, min_changes = 5) expect_equal(length(result_slow), 0) # Not enough systematic patterns (only one session) single_session <- data.frame( session_id = rep("s1", 5), event_type = rep("input", 5), input_id = rep("single_input", 5), timestamp = base_time + c(0, 1, 2, 3, 4), stringsAsFactors = FALSE ) result_single <- find_confusion_patterns(single_session, window_seconds = 10, min_changes = 5) expect_equal(length(result_single), 0) })