R version 4.4.0 alpha (2024-03-26 r86209 ucrt)
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(bgw)
> 
> test_check("bgw")
Simple mnl example 1 - non-verbose

Outcome of estimation search: ***** Relative function convergence ***** 
Number of iterations:  4 

MLE parameter estimate:
0.2792773 -0.7460936 -0.3949249

Estimated t-ratios:
2.138118 -5.998204 -3.142233

BGW is using FD derivatives for model Jacobian. (Caller did not provide derivatives.)

Valid user-provided bgw_setting names(s) detected...

bgw_settings[["printLevel"]] is set to user-provided value (2).

      BetaName InitialBeta(i) D(i)
    1       b1              0    0
    2       b2              0    0
    3       b3              0    0


    it    nf     F            RELDF    PRELDF    RELDX    MODEL stppar
     0     1 1.386294361e+03
     1     4 1.362272756e+03 1.733e-02 1.574e-02 1.00e+00   G   0.00e+00
     2     5 1.361971802e+03 2.209e-04 2.063e-04 5.85e-02   G   0.00e+00
     3     6 1.361970195e+03 1.180e-06 1.182e-06 4.39e-03   S   0.00e+00
     4     7 1.361970195e+03 1.636e-11 1.680e-11 1.42e-05   S   0.00e+00

       ***** Relative function convergence ***** 

       FUNCTION     1.361970195e+03  RELDX        1.423e-05 
       PRELDF       1.680e-11        NPRELDF      1.680e-11 
       func. evals  7               grad. evals  6 

       vcHessianMethod = Gauss-Newton/BHHH 
       Estimated upper bound on reciprocal of Euclidean condition number of vcHessian:  0.9465308  
       (Condition number = ratio of smallest singular value to largest singular value.)
       Value of unit roundoff = machine epsilon for comparison purposes:                2.220446e-16  

      BetaName FinalBeta(i)   s.e.(i) t.rat.(0)          G(i)     D(i)
    1       b1    0.2792773 0.1306183  2.138118  5.388073e-05 7.706524
    2       b2   -0.7460936 0.1243862 -5.998204 -5.103494e-07 8.041956
    3       b3   -0.3949249 0.1256829 -3.142233  2.110044e-06 7.957112


BGW is using FD derivatives for model Jacobian. (Caller did not provide derivatives.)

Valid user-provided bgw_setting names(s) detected...

bgw_settings[["printLevel"]] is set to user-provided value (2).
bgw_settings[["vcHessianMethod"]] is set to user-provided value ("none").

      BetaName InitialBeta(i) D(i)
    1       b1              0    0
    2       b2              0    0
    3       b3              0    0


    it    nf     F            RELDF    PRELDF    RELDX    MODEL stppar
     0     1 1.386294361e+03
     1     4 1.362272756e+03 1.733e-02 1.574e-02 1.00e+00   G   0.00e+00
     2     5 1.361971802e+03 2.209e-04 2.063e-04 5.85e-02   G   0.00e+00
     3     6 1.361970195e+03 1.180e-06 1.182e-06 4.39e-03   S   0.00e+00
     4     7 1.361970195e+03 1.636e-11 1.680e-11 1.42e-05   S   0.00e+00

       ***** Relative function convergence ***** 

       FUNCTION     1.361970195e+03  RELDX        1.423e-05 
       PRELDF       1.680e-11        NPRELDF      1.680e-11 
       func. evals  7               grad. evals  5 
       No variance-covariance matrix computation was requested. 

      BetaName FinalBeta(i)          G(i)     D(i)
    1       b1    0.2792773  5.388073e-05 7.706524
    2       b2   -0.7460936 -5.103493e-07 8.041956
    3       b3   -0.3949249  2.110044e-06 7.957112


[ FAIL 0 | WARN 0 | SKIP 0 | PASS 3 ]
> 
> proc.time()
   user  system elapsed 
   0.79    0.25    1.03