test_that("gibbs_var runs on sample white noise data", { test_data <- matrix(data=rnorm(200), nrow=100, ncol=2) test_data <- apply(test_data, 2, function(x) x-mean(x)) # just very few steps to make sure that the algorithm runs... mcmc <- gibbs_var(data=test_data, ar.order=2, Ntotal=2000, burnin=100, thin=1) # ... and produces results (i.e. PSD estimate & log posterior trace) expect_true(length(mcmc$lpost) > 0) expect_false(any(is.na(mcmc$lpost))) expect_true(length(mcmc$psd.median)>0) expect_false(all(is.na(mcmc$psd.median))) })