R Under development (unstable) (2023-10-13 r85327 ucrt) -- "Unsuffered Consequences" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(testthat) > library(betaNB) > > test_check("betaNB") Call: BetaNB(object = nb) Standardized regression slopes type = "pc" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% NARTIC 0.4951 0.0444 5 0.3998 0.4004 0.4029 0.5059 0.5069 0.5071 PCTGRT 0.3915 0.0564 5 0.4180 0.4182 0.4189 0.5450 0.5523 0.5539 PCTSUPP 0.2632 0.0672 5 0.1669 0.1672 0.1689 0.3238 0.3285 0.3295 Call: BetaNB(object = nb) Standardized regression slopes type = "pc" Call: BetaNB(object = nb) Standardized regression slopes type = "bc" Call: BetaNB(object = nb) Standardized regression slopes type = "bc" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% NARTIC 0.4951 0.0444 5 0.4065 0.4229 0.4458 0.5072 0.5072 0.5072 PCTGRT 0.3915 0.0564 5 0.4180 0.4180 0.4180 0.4180 0.4180 0.4180 PCTSUPP 0.2632 0.0672 5 0.1671 0.1684 0.1729 0.3280 0.3294 0.3296 Call: BetaNB(object = nb) Standardized regression slopes type = "bca" Call: BetaNB(object = nb) Standardized regression slopes type = "bca" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% NARTIC 0.4951 0.0444 5 0.4069 0.4234 0.4460 0.5072 0.5072 0.5072 PCTGRT 0.3915 0.0564 5 NaN NaN NaN NaN NaN NaN PCTSUPP 0.2632 0.0672 5 0.1669 0.1680 0.1721 0.3275 0.3292 0.3296 Call: BetaNB(object = nb) Standardized regression slopes type = "pc" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% NARTIC 0.7622 0.0591 5 0.6824 0.6836 0.6891 0.8328 0.8348 0.8353 Call: BetaNB(object = nb) Standardized regression slopes type = "pc" Call: BetaNB(object = nb) Standardized regression slopes type = "bc" Call: BetaNB(object = nb) Standardized regression slopes type = "bc" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% NARTIC 0.7622 0.0591 5 0.6823 0.6825 0.6841 0.828 0.8334 0.835 Call: BetaNB(object = nb) Standardized regression slopes type = "bca" Call: BetaNB(object = nb) Standardized regression slopes type = "bca" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% NARTIC 0.7622 0.0591 5 0.6822 0.6823 0.6833 0.8266 0.8324 0.8347 Call: DeltaRSqNB(object = nb) Improvement in R-squared type = "pc" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% NARTIC 0.1859 0.0373 5 0.1652 0.1658 0.1684 0.2622 0.2658 0.2667 PCTGRT 0.1177 0.0495 5 0.0219 0.0226 0.0257 0.1502 0.1550 0.1561 PCTSUPP 0.0569 0.0219 5 0.0221 0.0223 0.0231 0.0689 0.0690 0.0690 Call: DeltaRSqNB(object = nb) Improvement in R-squared type = "pc" Call: DiffBetaNB(object = nb) Differences of standardized regression slopes type = "pc" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% NARTIC-PCTGRT 0.1037 0.1303 5 -0.0553 -0.0539 -0.0476 0.2484 0.2509 0.2514 NARTIC-PCTSUPP 0.2319 0.0760 5 0.1545 0.1546 0.1553 0.3214 0.3254 0.3263 PCTGRT-PCTSUPP 0.1282 0.0700 5 0.0560 0.0564 0.0579 0.2129 0.2172 0.2182 Call: DiffBetaNB(object = nb) Differences of standardized regression slopes type = "pc" Call: NB(object = object, R = 6) The first six bootstrap covariance matrices. [[1]] [,1] [,2] [,3] [1,] 1.0099124 0.53370896 0.47994262 [2,] 0.5337090 1.07034018 0.04362108 [3,] 0.4799426 0.04362108 0.99932510 [[2]] [,1] [,2] [,3] [1,] 0.9528211 0.44685052 0.48008660 [2,] 0.4468505 0.98824535 -0.02845785 [3,] 0.4800866 -0.02845785 1.04559557 [[3]] [,1] [,2] [,3] [1,] 1.0588165 0.540911948 0.480732629 [2,] 0.5409119 1.038247062 0.009921316 [3,] 0.4807326 0.009921316 1.002934084 [[4]] [,1] [,2] [,3] [1,] 1.0611349 0.48205132 0.50436155 [2,] 0.4820513 0.99659705 0.00559072 [3,] 0.5043616 0.00559072 0.96031537 [[5]] [,1] [,2] [,3] [1,] 1.1187257 0.55970856 0.56140845 [2,] 0.5597086 1.02203524 0.02477157 [3,] 0.5614085 0.02477157 1.12240179 [[6]] [,1] [,2] [,3] [1,] 1.0318549 0.54098946 0.47090224 [2,] 0.5409895 1.13249519 0.03964982 [3,] 0.4709022 0.03964982 0.96126856 Call: PCorNB(object = nb) Squared partial correlations type = "pc" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% NARTIC 0.4874 0.0989 5 0.3606 0.3617 0.3666 0.6083 0.6149 0.6164 PCTGRT 0.3757 0.0819 5 0.2892 0.2901 0.2942 0.4883 0.4928 0.4938 PCTSUPP 0.2254 0.1261 5 0.0114 0.0155 0.0339 0.3196 0.3208 0.3211 Call: PCorNB(object = nb) Squared partial correlations type = "pc" Call: RSqNB(object = nb) R-squared and adjusted R-squared type = "pc" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% rsq 0.8045 0.0545 5 0.7330 0.7347 0.7423 0.8743 0.8764 0.8769 adj 0.7906 0.0584 5 0.7139 0.7158 0.7239 0.8653 0.8676 0.8681 Call: RSqNB(object = nb) R-squared and adjusted R-squared type = "pc" Call: RSqNB(object = nb) R-squared and adjusted R-squared type = "pc" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% rsq 0.5809 0.0750 5 0.5512 0.5526 0.5591 0.7435 0.7468 0.7476 adj 0.5714 0.0767 5 0.5410 0.5425 0.5490 0.7377 0.7411 0.7418 Call: RSqNB(object = nb) R-squared and adjusted R-squared type = "pc" Call: SCorNB(object = nb) Semipartial correlations type = "pc" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% NARTIC 0.4312 0.0741 5 0.3129 0.3147 0.3226 0.5038 0.5065 0.5071 PCTGRT 0.3430 0.1078 5 0.2347 0.2351 0.2368 0.4863 0.4959 0.4980 PCTSUPP 0.2385 0.0413 5 0.1942 0.1943 0.1951 0.2830 0.2835 0.2836 Call: SCorNB(object = nb) Semipartial correlations type = "pc" [ FAIL 0 | WARN 0 | SKIP 0 | PASS 12 ] > > proc.time() user system elapsed 0.84 0.15 0.98