R version 4.4.0 beta (2024-04-12 r86413 ucrt) -- "Puppy Cup" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(testthat) > library(betaMC) > > test_check("betaMC") Call: BetaMC(object = mc) Standardized regression slopes type = "mvn" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% NARTIC 0.4951 0.0726 5 0.4287 0.4293 0.4320 0.5929 0.5942 0.5945 PCTGRT 0.3915 0.0572 5 0.2140 0.2144 0.2159 0.3411 0.3420 0.3422 PCTSUPP 0.2632 0.0832 5 0.1567 0.1594 0.1712 0.3570 0.3581 0.3584 Call: BetaMC(object = mc) Standardized regression slopes type = "mvn" Call: BetaMC(object = mc) Standardized regression slopes type = "mvn" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% NARTIC 0.7622 0.0402 5 0.7083 0.7085 0.7093 0.8037 0.8092 0.8105 Call: BetaMC(object = mc) Standardized regression slopes type = "mvn" Call: BetaMC(object = mc) Standardized regression slopes type = "mvn" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% NARTIC 0.4951 0.0726 5 0.4287 0.4293 0.4320 0.5929 0.5942 0.5945 PCTGRT 0.3915 0.0572 5 0.2140 0.2144 0.2159 0.3411 0.3420 0.3422 PCTSUPP 0.2632 0.0832 5 0.1567 0.1594 0.1712 0.3570 0.3581 0.3584 Call: BetaMC(object = mc) Standardized regression slopes type = "mvn" Call: BetaMC(object = mc) Standardized regression slopes type = "mvn" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% NARTIC 0.7622 0.0402 5 0.7083 0.7085 0.7093 0.8037 0.8092 0.8105 Call: BetaMC(object = mc) Standardized regression slopes type = "mvn" Call: DeltaRSqMC(object = mc) Improvement in R-squared type = "mvn" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% NARTIC 0.1859 0.0785 5 0.0760 0.0768 0.0802 0.2711 0.2778 0.2794 PCTGRT 0.1177 0.0244 5 0.0270 0.0272 0.0284 0.0853 0.0867 0.0870 PCTSUPP 0.0569 0.0351 5 0.0137 0.0144 0.0176 0.1073 0.1107 0.1114 Call: DeltaRSqMC(object = mc) Improvement in R-squared type = "mvn" Call: DeltaRSqMC(object = mc) Improvement in R-squared type = "mvn" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% NARTIC 0.1859 0.0785 5 0.0760 0.0768 0.0802 0.2711 0.2778 0.2794 PCTGRT 0.1177 0.0244 5 0.0270 0.0272 0.0284 0.0853 0.0867 0.0870 PCTSUPP 0.0569 0.0351 5 0.0137 0.0144 0.0176 0.1073 0.1107 0.1114 Call: DeltaRSqMC(object = mc) Improvement in R-squared type = "mvn" Call: DiffBetaMC(object = mc) Differences of standardized regression slopes type = "mvn" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% NARTIC-PCTGRT 0.1037 0.1156 5 0.0866 0.0874 0.0909 0.3542 0.3599 0.3612 NARTIC-PCTSUPP 0.2319 0.1430 5 0.0880 0.0883 0.0896 0.4089 0.4194 0.4218 PCTGRT-PCTSUPP 0.1282 0.0980 5 -0.1308 -0.1297 -0.1249 0.1188 0.1293 0.1316 Call: DiffBetaMC(object = mc) Differences of standardized regression slopes type = "mvn" Call: DiffBetaMC(object = mc) Differences of standardized regression slopes type = "mvn" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% NARTIC-PCTGRT 0.1037 0.1156 5 0.0866 0.0874 0.0909 0.3542 0.3599 0.3612 NARTIC-PCTSUPP 0.2319 0.1430 5 0.0880 0.0883 0.0896 0.4089 0.4194 0.4218 PCTGRT-PCTSUPP 0.1282 0.0980 5 -0.1308 -0.1297 -0.1249 0.1188 0.1293 0.1316 Call: DiffBetaMC(object = mc) Differences of standardized regression slopes type = "mvn" MCMI(object = object, mi = mi, R = R, type = "mvn", fixed_x = TRUE) MCMI(object = object, mi = mi, R = R, type = "adf", fixed_x = TRUE) MCMI(object = object, mi = mi, R = R, type = "hc0", fixed_x = TRUE) MCMI(object = object, mi = mi, R = R, type = "hc1", fixed_x = TRUE) MCMI(object = object, mi = mi, R = R, type = "hc2", fixed_x = TRUE) MCMI(object = object, mi = mi, R = R, type = "hc3", fixed_x = TRUE) MCMI(object = object, mi = mi, R = R, type = "hc4", fixed_x = TRUE) MCMI(object = object, mi = mi, R = R, type = "hc4m", fixed_x = TRUE) MCMI(object = object, mi = mi, R = R, type = "hc5", fixed_x = TRUE) MC(object = object, R = R, type = "mvn", fixed_x = TRUE) MC(object = object, R = R, type = "adf", fixed_x = TRUE) MC(object = object, R = R, type = "hc0", fixed_x = TRUE) MC(object = object, R = R, type = "hc1", fixed_x = TRUE) MC(object = object, R = R, type = "hc2", fixed_x = TRUE) MC(object = object, R = R, type = "hc3", fixed_x = TRUE) MC(object = object, R = R, type = "hc4", fixed_x = TRUE) MC(object = object, R = R, type = "hc4m", fixed_x = TRUE) MC(object = object, R = R, type = "hc5", fixed_x = TRUE) Call: MC(object = object, R = 5L, decomposition = "chol", fixed_x = TRUE) The first set of simulated parameter estimates and model-implied covariance matrix. $coef [1] 0.4811796 0.5247135 $sigmasq [1] 0.5564911 $vechsigmacapx [1] 1.000000e+00 -2.950685e-16 1.000000e+00 $sigmacapx [,1] [,2] [1,] 1.000000e+00 -2.950685e-16 [2,] -2.950685e-16 1.000000e+00 $sigmaysq [1] 1.063349 $sigmayx [1] 0.4811796 0.5247135 $sigmacap [,1] [,2] [,3] [1,] 1.0633492 4.811796e-01 5.247135e-01 [2,] 0.4811796 1.000000e+00 -2.950685e-16 [3,] 0.5247135 -2.950685e-16 1.000000e+00 $pd [1] TRUE Call: MC(object = object, R = 5L, decomposition = "svd", fixed_x = TRUE) The first set of simulated parameter estimates and model-implied covariance matrix. $coef [1] 0.4971297 0.5092979 $sigmasq [1] 0.5110473 $vechsigmacapx [1] 1.000000e+00 -2.950685e-16 1.000000e+00 $sigmacapx [,1] [,2] [1,] 1.000000e+00 -2.950685e-16 [2,] -2.950685e-16 1.000000e+00 $sigmaysq [1] 1.01757 $sigmayx [1] 0.4971297 0.5092979 $sigmacap [,1] [,2] [,3] [1,] 1.0175696 4.971297e-01 5.092979e-01 [2,] 0.4971297 1.000000e+00 -2.950685e-16 [3,] 0.5092979 -2.950685e-16 1.000000e+00 $pd [1] TRUE MCMI(object = object, mi = mi, R = R, type = "mvn") MCMI(object = object, mi = mi, R = R, type = "adf") MCMI(object = object, mi = mi, R = R, type = "hc0") MCMI(object = object, mi = mi, R = R, type = "hc1") MCMI(object = object, mi = mi, R = R, type = "hc2") MCMI(object = object, mi = mi, R = R, type = "hc3") MCMI(object = object, mi = mi, R = R, type = "hc4") MCMI(object = object, mi = mi, R = R, type = "hc4m") MCMI(object = object, mi = mi, R = R, type = "hc5") MC(object = object, R = R, type = "mvn") MC(object = object, R = R, type = "adf") MC(object = object, R = R, type = "hc0") MC(object = object, R = R, type = "hc1") MC(object = object, R = R, type = "hc2") MC(object = object, R = R, type = "hc3") MC(object = object, R = R, type = "hc4") MC(object = object, R = R, type = "hc4m") MC(object = object, R = R, type = "hc5") Call: MC(object = object, R = 5L, decomposition = "chol") The first set of simulated parameter estimates and model-implied covariance matrix. $coef [1] 0.4948543 0.5180275 $sigmasq [1] 0.5517818 $vechsigmacapx [1] 0.94325321 -0.01001239 1.00981987 $sigmacapx [,1] [,2] [1,] 0.94325321 -0.01001239 [2,] -0.01001239 1.00981987 $sigmaysq [1] 1.048621 $sigmayx [1] 0.4615862 0.5181598 $sigmacap [,1] [,2] [,3] [1,] 1.0486207 0.46158623 0.51815979 [2,] 0.4615862 0.94325321 -0.01001239 [3,] 0.5181598 -0.01001239 1.00981987 $pd [1] TRUE Call: MC(object = object, R = 5L, decomposition = "svd") The first set of simulated parameter estimates and model-implied covariance matrix. $coef [1] 0.4873036 0.5138718 $sigmasq [1] 0.519847 $vechsigmacapx [1] 0.92654372 0.01659553 1.01126328 $sigmacapx [,1] [,2] [1,] 0.92654372 0.01659553 [2,] 0.01659553 1.01126328 $sigmaysq [1] 1.015218 $sigmayx [1] 0.4600361 0.5277467 $sigmacap [,1] [,2] [,3] [1,] 1.0152184 0.46003610 0.52774671 [2,] 0.4600361 0.92654372 0.01659553 [3,] 0.5277467 0.01659553 1.01126328 $pd [1] TRUE Call: PCorMC(object = mc) Squared partial correlations type = "mvn" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% NARTIC 0.4874 0.1162 5 0.3167 0.3169 0.3175 0.5808 0.5883 0.5900 PCTGRT 0.3757 0.0565 5 0.1414 0.1420 0.1446 0.2683 0.2690 0.2692 PCTSUPP 0.2254 0.1112 5 0.0644 0.0667 0.0770 0.3578 0.3660 0.3679 Call: PCorMC(object = mc) Squared partial correlations type = "mvn" Call: PCorMC(object = mc) Squared partial correlations type = "mvn" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% NARTIC 0.4874 0.1162 5 0.3167 0.3169 0.3175 0.5808 0.5883 0.5900 PCTGRT 0.3757 0.0565 5 0.1414 0.1420 0.1446 0.2683 0.2690 0.2692 PCTSUPP 0.2254 0.1112 5 0.0644 0.0667 0.0770 0.3578 0.3660 0.3679 Call: PCorMC(object = mc) Squared partial correlations type = "mvn" Call: RSqMC(object = mc) R-squared and adjusted R-squared type = "mvn" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% rsq 0.8045 0.0307 5 0.7517 0.7526 0.7566 0.8335 0.8357 0.8362 adj 0.7906 0.0329 5 0.7340 0.7349 0.7393 0.8216 0.8240 0.8245 Call: RSqMC(object = mc) R-squared and adjusted R-squared type = "mvn" Call: RSqMC(object = mc) R-squared and adjusted R-squared type = "mvn" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% rsq 0.5809 0.0613 5 0.5017 0.5020 0.5031 0.6463 0.6549 0.6569 adj 0.5714 0.0627 5 0.4904 0.4907 0.4918 0.6383 0.6471 0.6491 Call: RSqMC(object = mc) R-squared and adjusted R-squared type = "mvn" Call: RSqMC(object = mc) R-squared and adjusted R-squared type = "mvn" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% rsq 0.8045 0.0307 5 0.7517 0.7526 0.7566 0.8335 0.8357 0.8362 adj 0.7906 0.0329 5 0.7340 0.7349 0.7393 0.8216 0.8240 0.8245 Call: RSqMC(object = mc) R-squared and adjusted R-squared type = "mvn" Call: RSqMC(object = mc) R-squared and adjusted R-squared type = "mvn" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% rsq 0.5809 0.0613 5 0.5017 0.5020 0.5031 0.6463 0.6549 0.6569 adj 0.5714 0.0627 5 0.4904 0.4907 0.4918 0.6383 0.6471 0.6491 Call: RSqMC(object = mc) R-squared and adjusted R-squared type = "mvn" Call: SCorMC(object = mc) Semipartial correlations type = "mvn" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% NARTIC 0.4312 0.0964 5 0.2756 0.2769 0.2825 0.520 0.5270 0.5285 PCTGRT 0.3430 0.0525 5 0.1642 0.1650 0.1682 0.292 0.2943 0.2949 PCTSUPP 0.2385 0.0786 5 0.1168 0.1189 0.1281 0.327 0.3325 0.3337 Call: SCorMC(object = mc) Semipartial correlations type = "mvn" Call: SCorMC(object = mc) Semipartial correlations type = "mvn" est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95% NARTIC 0.4312 0.0964 5 0.2756 0.2769 0.2825 0.520 0.5270 0.5285 PCTGRT 0.3430 0.0525 5 0.1642 0.1650 0.1682 0.292 0.2943 0.2949 PCTSUPP 0.2385 0.0786 5 0.1168 0.1189 0.1281 0.327 0.3325 0.3337 Call: SCorMC(object = mc) Semipartial correlations type = "mvn" beta1 beta2 beta3 sigmasq sigmax1x1 sigmax2x1 sigmax3x1 sigmaysq 909.1981 257.2976 276.0367 1 0.007091036 0.03637752 0.01896371 sigmayx1 3507.1691 471.2058 510.5430 0 0.084208291 0.21599726 0.11260003 sigmayx2 471.2058 333.2295 150.9121 0 0.000000000 0.08420829 0.00000000 sigmayx3 510.5430 150.9121 554.4386 0 0.000000000 0.00000000 0.08420829 sigmax1x1 0.0000 0.0000 0.0000 0 1.000000000 0.00000000 0.00000000 sigmax2x1 0.0000 0.0000 0.0000 0 0.000000000 1.00000000 0.00000000 sigmax3x1 0.0000 0.0000 0.0000 0 0.000000000 0.00000000 1.00000000 sigmax2x2 0.0000 0.0000 0.0000 0 0.000000000 0.00000000 0.00000000 sigmax3x2 0.0000 0.0000 0.0000 0 0.000000000 0.00000000 0.00000000 sigmax3x3 0.0000 0.0000 0.0000 0 0.000000000 0.00000000 0.00000000 sigmax2x2 sigmax3x2 sigmax3x3 sigmaysq 0.04665482 0.0486426 0.01267877 sigmayx1 0.00000000 0.0000000 0.00000000 sigmayx2 0.21599726 0.1126000 0.00000000 sigmayx3 0.00000000 0.2159973 0.11260003 sigmax1x1 0.00000000 0.0000000 0.00000000 sigmax2x1 0.00000000 0.0000000 0.00000000 sigmax3x1 0.00000000 0.0000000 0.00000000 sigmax2x2 1.00000000 0.0000000 0.00000000 sigmax3x2 0.00000000 1.0000000 0.00000000 sigmax3x3 0.00000000 0.0000000 1.00000000 beta1 beta2 beta3 sigmasq sigmaysq 909.1981 257.2976 276.0367 1 sigmayx1 3507.1691 471.2058 510.5430 0 sigmayx2 471.2058 333.2295 150.9121 0 sigmayx3 510.5430 150.9121 554.4386 0 sigmax1x1 0.0000 0.0000 0.0000 0 sigmax2x1 0.0000 0.0000 0.0000 0 sigmax3x1 0.0000 0.0000 0.0000 0 sigmax2x2 0.0000 0.0000 0.0000 0 sigmax3x2 0.0000 0.0000 0.0000 0 sigmax3x3 0.0000 0.0000 0.0000 0 beta1 beta2 beta3 rsq sigmax1x1 sigmax2x1 sigmaysq 909.1981 257.2976 276.0367 -126.0843 0.007091036 0.03637752 sigmayx1 3507.1691 471.2058 510.5430 0.0000 0.084208291 0.21599726 sigmayx2 471.2058 333.2295 150.9121 0.0000 0.000000000 0.08420829 sigmayx3 510.5430 150.9121 554.4386 0.0000 0.000000000 0.00000000 sigmax1x1 0.0000 0.0000 0.0000 0.0000 1.000000000 0.00000000 sigmax2x1 0.0000 0.0000 0.0000 0.0000 0.000000000 1.00000000 sigmax3x1 0.0000 0.0000 0.0000 0.0000 0.000000000 0.00000000 sigmax2x2 0.0000 0.0000 0.0000 0.0000 0.000000000 0.00000000 sigmax3x2 0.0000 0.0000 0.0000 0.0000 0.000000000 0.00000000 sigmax3x3 0.0000 0.0000 0.0000 0.0000 0.000000000 0.00000000 sigmax3x1 sigmax2x2 sigmax3x2 sigmax3x3 sigmaysq 0.01896371 0.04665482 0.0486426 0.01267877 sigmayx1 0.11260003 0.00000000 0.0000000 0.00000000 sigmayx2 0.00000000 0.21599726 0.1126000 0.00000000 sigmayx3 0.08420829 0.00000000 0.2159973 0.11260003 sigmax1x1 0.00000000 0.00000000 0.0000000 0.00000000 sigmax2x1 0.00000000 0.00000000 0.0000000 0.00000000 sigmax3x1 1.00000000 0.00000000 0.0000000 0.00000000 sigmax2x2 0.00000000 1.00000000 0.0000000 0.00000000 sigmax3x2 0.00000000 0.00000000 1.0000000 0.00000000 sigmax3x3 0.00000000 0.00000000 0.0000000 1.00000000 beta1 beta2 beta3 rsq sigmaysq 909.1981 257.2976 276.0367 -126.0843 sigmayx1 3507.1691 471.2058 510.5430 0.0000 sigmayx2 471.2058 333.2295 150.9121 0.0000 sigmayx3 510.5430 150.9121 554.4386 0.0000 sigmax1x1 0.0000 0.0000 0.0000 0.0000 sigmax2x1 0.0000 0.0000 0.0000 0.0000 sigmax3x1 0.0000 0.0000 0.0000 0.0000 sigmax2x2 0.0000 0.0000 0.0000 0.0000 sigmax3x2 0.0000 0.0000 0.0000 0.0000 sigmax3x3 0.0000 0.0000 0.0000 0.0000 [ FAIL 0 | WARN 0 | SKIP 0 | PASS 91 ] > > proc.time() user system elapsed 5.65 0.54 6.18