library(bellreg) # ML approach: data(cells) mle <- zibellreg(cells ~ smoker+gender|smoker+gender, data = cells, approach = "mle") summary(mle) coef(mle) vcov(mle) confint(mle) # Bayesian approach: bayes <- zibellreg(cells ~ 1|smoker+gender, data = cells, approach = "bayes", chains = 2, iter = 100, refresh = FALSE) summary(bayes)