# set up example ---------------------------------------------------------- data <- trial01 data$trtp <- factor(data$trtp) data_complete <- na.omit(data) # Correct model type and properties test_that("Correct model passes with no errors or warnings", { fit <- glm(aval ~ trtp + bl_cov, family = binomial(link = "logit"), data = data_complete) expect_silent(sanitize_model(fit, "trtp")) }) # test warnings/errors ------------------------------------------------------------ test_that("Correctly throwing warnings on missing value", { fit1 <- glm(aval ~ trtp + bl_cov, family = "binomial", data = data) expect_warning( sanitize_model(fit1, "trtp"), "There is 1 record omitted from the original data due to missing values, please check if they should be imputed prior to model fitting." ) data$aval[10] <- NA fit2 <- glm(aval ~ trtp + bl_cov, family = "binomial", data = data) expect_warning( sanitize_model(fit2, "trtp"), "There are 2 records omitted from the original data due to missing values, please check if they should be imputed prior to model fitting." ) }) test_that("Correctly throwing errors on incompatible link function", { fit1 <- glm(aval ~ trtp + bl_cov, family = binomial(link = "probit"), data = data) expect_error( sanitize_model(fit1, "trtp"), "Model of class glm not in the binomial family with logit link function is not supported." ) }) test_that("Correctly throwing errors on treatment interaction", { fit1 <- glm(aval ~ trtp * bl_cov, family = "binomial", data = data) expect_error( sanitize_model(fit1, "trtp"), "Model of class glm with treatment-covariate interaction terms is not supported." ) }) # Treatment variable in model data test_that("Treatment variable in model data", { fit <- glm(aval ~ trtp + bl_cov, family = binomial(link = "logit"), data = data_complete) expect_error( sanitize_model(fit, "trt"), 'Did not find the treatment variable "trt" on right hand side of the model formula', ) }) test_that("Check treatment variable is a factor", { data_complete$trtp <- as.numeric(data_complete$trtp) fit1 <- glm(aval ~ trtp + bl_cov, family = binomial(link = "logit"), data = data_complete) expect_error( sanitize_model(fit1, "trtp"), 'Treatment variable "trtp" must be of type factor, not "double".', fixed = TRUE ) }) test_that("Check response variable is 0/1", { data_complete$aval <- replace(data_complete$aval, data_complete$aval == "0", "0.5") levels(data_complete[["aval"]]) <- c("0.5", "1") data_complete$aval <- as.factor(data_complete$aval) fit1 <- glm(aval ~ trtp + bl_cov, family = binomial(link = "logit"), data = data_complete) expect_error(sanitize_model(fit1, "trtp")) }) test_that("Correctly throw error on incorrect model class", { lm_fit <- stats::lm(aval ~ trtp + bl_cov, data = data_complete) expect_error( sanitize_model(lm_fit, "trtp"), 'Model of class "lm" is not supported.', fixed = TRUE ) }) test_that("Throw warning if model matrix not full rank", { # create rank deficient example mat <- data.frame(list( y = rbinom(100, 1, 0.5), trtp = factor(rbinom(100, 1, 0.5)), x1 = rnorm(100), x2 = rnorm(100) )) mat[["x3"]] <- mat$x1 + mat$x2 fit1 <- glm(y ~ trtp + x1 + x2 + x3, family = "binomial", data = mat) expect_error( sanitize_model(fit1, "trtp"), "The data does not have full rank, please check glm model fitting.", fixed = TRUE ) }) test_that("Throw warning if model not converged", { # fit glm with reduced max iterations so does not converge suppressWarnings( fit1 <- glm(aval ~ trtp, family = "binomial", data = data_complete, control = glm.control(maxit = 1) ) ) expect_warning( sanitize_model(fit1, "trtp"), "The glm model was not converged, please check glm model fitting.", fixed = TRUE ) }) test_that("Throw error if treatment not on right hand side of model formula", { fit1 <- glm(trtp ~ aval, family = "binomial", data = data) expect_error( sanitize_variable(fit1, "trtp"), 'Did not find the treatment variable "trtp" on right hand side of the model formula', fixed = TRUE ) })