# set up example ---------------------------------------------------------- data01 <- trial01 |> transform(trtp = as.factor(trtp)) |> dplyr::filter(!is.na(aval)) # test calculation -------------------------------------------------------- test_that("averaging counterfactual predictions works", { fit1 <- glm(aval ~ trtp + bl_cov, family = "binomial", data = data01) fit1 <- predict_counterfactuals(fit1, "trtp") fit1 <- average_predictions(fit1) expected_output <- c( "0" = mean(fit1$counterfactual.predictions[["0"]]), "1" = mean(fit1$counterfactual.predictions[["1"]]) ) expect_equal(fit1$counterfactual.means, expected_output) }) test_that("averaging throws error if no counterfactual predictions in glm object", { fit1 <- glm(aval ~ trtp + bl_cov, family = "binomial", data = data01) expect_error(average_predictions(fit1)) }) # Test Case 1: Missing Counterfactual Predictions test_that("Test missing counterfactual predictions", { data <- data.frame(aval = factor(c(1, 0)), trtp = factor(c(1, 0)), bl_cov = rnorm(100)) fit <- glm(aval ~ trtp + bl_cov, family = binomial(link = "logit"), data = data) expect_error( average_predictions(fit), "Missing counterfactual predictions" ) }) # Test Case 2: Correct Calculation of Averages test_that("Test correct calculation of averages", { data <- data.frame(aval = factor(c(1, 0)), trtp = factor(c(1, 0)), bl_cov = rnorm(100)) fit <- glm(aval ~ trtp + bl_cov, family = binomial(link = "logit"), data = data) fit1 <- predict_counterfactuals(fit, "trtp") result <- average_predictions(fit1) computed_means <- colMeans(fit1$counterfactual.predictions) names(computed_means) <- levels(data$trtp) expect_equal(result$counterfactual.means, computed_means) }) # Test Case 3: Dependency on Predict Counterfactuals test_that("Ensure function depends on predict_counterfactuals", { data <- data.frame(aval = factor(c(1, 0)), trtp = factor(c(1, 0)), bl_cov = rnorm(100)) fit <- glm(aval ~ trtp + bl_cov, family = binomial(link = "logit"), data = data) fit$counterfactual.predictions <- matrix(runif(200), nrow = 100, ncol = 2) # Assuming predict_counterfactuals modifies object in a specific way that average_predictions expects fit <- predict_counterfactuals(fit, trt = "trtp") expect_silent(average_predictions(fit)) }) # Test Case 4: Integrity of Output Object test_that("Test integrity of output object", { data <- data.frame(aval = factor(c(1, 0)), trtp = factor(c(1, 0)), bl_cov = rnorm(100)) fit <- glm(aval ~ trtp + bl_cov, family = binomial(link = "logit"), data = data) fit1 <- predict_counterfactuals(fit, "trtp") original_fit <- fit1 modified_fit <- average_predictions(fit1) expect_equal(length(names(modified_fit)), length(names(original_fit)) + 1) # Check for only one new addition }) # Test Case 5: Handling Different Data Types test_that("Test handling of different data types", { data <- data.frame(aval = factor(c(1, 0)), trtp = factor(c("A", "B")), bl_cov = rnorm(100)) fit <- glm(aval ~ trtp + bl_cov, family = binomial(link = "logit"), data = data) fit1 <- predict_counterfactuals(fit, "trtp") result <- average_predictions(fit1) expect_type(result$counterfactual.means, "double") expect_length(levels(.get_data(fit)[["trtp"]]), length(result$counterfactual.means)) }) test_that("Check model is sanitized", { fit1 <- glm(aval ~ trtp + bl_cov, family = "binomial", data = data01) |> predict_counterfactuals(trt = "trtp") fit1$sanitized <- NULL expect_warning( average_predictions(object = fit1), "Input object did not meet the expected format for beeca. Results may not be valid. Consider using ?get_marginal_effect", fixed = TRUE ) })