context('plm0') tol <- 1e-8 test_that("plm0 can handle different inputs", { expect_error(plm0(Q ~ W, c(1, 2, 3))) expect_error(plm0('Q ~ W', krokfors)) expect_error(plm0(V ~ W, krokfors)) expect_error(plm0(Q ~ W + X, krokfors)) expect_error(plm0(Q ~ W, krokfors, c_param = min(krokfors$W) + 0.5)) # c_param higher than lowest stage measurements expect_error(plm0(Q ~ W, krokfors, c_param = 1L)) # c_param not double expect_error(plm0(Q ~ W, krokfors, h_max = max(krokfors$W) - 0.5)) #h_max lower than highest stage measurement expect_error(plm0(Q ~ W, krokfors[1,]), "At least two paired observations of stage and discharge") expect_error(plm0(Q ~ W, -1 * krokfors), "All discharge measurements must but strictly greater than zero") skip_on_cran() krokfors_new_names <- krokfors names(krokfors_new_names) <- c('t1', 't2') set.seed(1) plm0.fit_new_names <- plm0(t2 ~ t1, krokfors_new_names, num_cores = 2) expect_equal(plm0.fit_new_names$rating_curve, plm0.fit$rating_curve, tolerance = tol) }) test_that("the plm0 object with unknown c is in tact", { expect_is(plm0.fit, "plm0") # latent parameters test_stage_indep_param(plm0.fit, 'a') test_stage_indep_param(plm0.fit, 'b') # hyperparameters test_stage_indep_param(plm0.fit, 'c') test_stage_indep_param(plm0.fit, 'sigma_eps') # log-likelihood expect_true(is.double(plm0.fit$posterior_log_likelihood)) expect_equal(length(plm0.fit$posterior_log_likelihood), plm0.fit$run_info$num_chains * ((plm0.fit$run_info$nr_iter - plm0.fit$run_info$burnin) / plm0.fit$run_info$thin + 1)) expect_equal(unname(unlist(plm0.fit$posterior_log_likelihood_summary[1, ])), as.double(get_MCMC_summary(matrix(plm0.fit$posterior_log_likelihood, nrow = 1))), tolerance = tol) # rating curve test_stage_dep_component(plm0.fit, 'rating_curve') test_stage_dep_component(plm0.fit, 'rating_curve_mean') # Other information expect_equal(plm0.fit$formula, Q ~ W) expect_equal(plm0.fit$data, krokfors[order(krokfors$W), c('Q', 'W')]) }) test_that("the plm0 object with known c with a maximum stage value is in tact", { skip_on_cran() set.seed(1) plm0.fit_known_c <- plm0(Q ~ W, krokfors, c_param = known_c, h_max = h_extrap, num_cores = 2) expect_is(plm0.fit_known_c, "plm0") # latent parameters test_stage_indep_param(plm0.fit_known_c, 'a') test_stage_indep_param(plm0.fit_known_c, 'b') # hyperparameters expect_true(is.null(plm0.fit_known_c[['c_posterior']])) expect_false('c' %in% row.names(plm0.fit_known_c)) test_stage_indep_param(plm0.fit_known_c, 'sigma_eps') # log-likelihood expect_true(is.double(plm0.fit_known_c$posterior_log_likelihood)) expect_equal(length(plm0.fit_known_c$posterior_log_likelihood), plm0.fit_known_c$run_info$num_chains * ((plm0.fit_known_c$run_info$nr_iter - plm0.fit_known_c$run_info$burnin) / plm0.fit_known_c$run_info$thin + 1)) expect_equal(unname(unlist(plm0.fit_known_c$posterior_log_likelihood_summary[1, ])), as.double(get_MCMC_summary(matrix(plm0.fit_known_c$posterior_log_likelihood, nrow = 1))), tolerance = tol) # rating curve test_stage_dep_component(plm0.fit_known_c, 'rating_curve') test_stage_dep_component(plm0.fit_known_c, 'rating_curve_mean') # check if maxmimum stage was in line with output expect_equal(max(plm0.fit_known_c$rating_curve$h), h_extrap, tolerance = tol) expect_true(max(diff(plm0.fit_known_c$rating_curve$h)) <= (0.05 + tol)) # added tolerance }) # C++ functions tests test_that("plm0.density_evaluation_unknown_c works correctly", { RC <- get_model_components('plm0', y = y, h = h, c_param = NULL, h_max = max(h), forcepoint = rep(FALSE, length(h)), h_min = min(h)) theta <- c(log(1), log(0.1)) result <- plm0.density_evaluation_unknown_c(theta, RC) expect_type(result, "list") expect_true(all(c("p", "x", "y_post", "y_post_pred", "log_lik") %in% names(result))) expect_true(all(sapply(result, is.numeric))) }) test_that("plm0.density_evaluation_known_c works correctly", { RC <- get_model_components('plm0', y = y, h = h, c_param = min(h) - 0.1, h_max = max(h), forcepoint = rep(FALSE, length(h)), h_min = min(h)) theta <- c(log(0.1)) result <- plm0.density_evaluation_known_c(theta, RC) expect_type(result, "list") expect_true(all(c("p", "x", "y_post", "y_post_pred", "log_lik") %in% names(result))) expect_true(all(sapply(result, is.numeric))) }) test_that("plm0.predict_u_unknown_c works correctly", { RC <- get_model_components('plm0', y = y, h = h, c_param = NULL, h_max = max(h), forcepoint = rep(FALSE, length(h)), h_min = min(h)) theta <- c(log(1), log(0.1)) x <- c(1, 2) result <- plm0.predict_u_unknown_c(theta, x, RC) expect_type(result, "list") expect_true(all(c("y_post", "y_post_pred") %in% names(result))) expect_true(all(sapply(result, is.numeric))) expect_equal(length(result$y_post), length(RC$h_u)) expect_equal(length(result$y_post_pred), length(RC$h_u)) }) test_that("plm0.predict_u_known_c works correctly", { RC <- get_model_components('plm0', y = y, h = h, c_param = min(h) - 0.1, h_max = max(h), forcepoint = rep(FALSE, length(h)), h_min = min(h)) theta <- c(log(0.1)) x <- c(1, 2) result <- plm0.predict_u_known_c(theta, x, RC) expect_type(result, "list") expect_true(all(c("y_post", "y_post_pred") %in% names(result))) expect_true(all(sapply(result, is.numeric))) expect_equal(length(result$y_post), length(RC$h_u)) expect_equal(length(result$y_post_pred), length(RC$h_u)) }) test_that("plm0.calc_Dhat works correctly", { RC <- get_model_components('plm0', y = y, h = h, c_param = NULL, h_max = max(h), forcepoint = rep(FALSE, length(h)), h_min = min(h)) theta <- matrix(c(log(1), log(0.1)), nrow = 2) result <- plm0.calc_Dhat(theta, RC) expect_type(result, "double") expect_true(is.finite(result)) })