test_that("OptimInstanceBatchSingleCrit", { inst = MAKE_INST_2D(20L) expect_r6(inst$archive, "ArchiveBatch") expect_data_table(inst$archive$data, nrows = 0L) expect_identical(inst$archive$n_evals, 0L) expect_identical(inst$archive$n_batch, 0L) expect_null(inst$result) expect_snapshot(inst) xdt = data.table(x1 = -1:1, x2 = list(-1, 0, 1)) expect_named(inst$eval_batch(xdt), "y") expect_data_table(inst$archive$data, nrows = 3L) expect_equal(inst$archive$data$y, c(2, 0, 2)) expect_identical(inst$archive$n_evals, 3L) expect_identical(inst$archive$n_batch, 1L) expect_null(inst$result) inst$assign_result(xdt = xdt[2, ], y = c(y = -10)) expect_equal(inst$result, cbind(xdt[2, ], x_domain = list(list(x1 = 0, x2 = 0)), y = -10)) inst = MAKE_INST_2D(20L) optimizer = opt("random_search") optimizer$optimize(inst) }) test_that("OptimInstance works with trafos", { inst = MAKE_INST(objective = OBJ_2D, search_space = PS_2D_TRF, 20L) xdt = data.table(x1 = -1:1, x2 = list(1, 2, 3)) inst$eval_batch(xdt) expect_data_table(inst$archive$data, nrows = 3L) expect_equal(inst$archive$data$y, c(2, 0, 2)) expect_equal(inst$archive$data$x_domain[[1]], list(x1 = -1, x2 = -1)) }) test_that("OptimInstance works with extras input", { inst = MAKE_INST(objective = OBJ_2D, search_space = PS_2D_TRF, 20L) xdt = data.table(x1 = -1:1, x2 = list(1, 2, 3), extra1 = letters[1:3], extra2 = as.list(LETTERS[1:3])) inst$eval_batch(xdt) expect_data_table(inst$archive$data, nrows = 3L) expect_equal(inst$archive$data$y, c(2, 0, 2)) expect_equal(inst$archive$data$x_domain[[1]], list(x1 = -1, x2 = -1)) expect_subset(colnames(xdt), colnames(inst$archive$data)) expect_equal(xdt, inst$archive$data[, colnames(xdt), with = FALSE]) # just add extras sometimes xdt = data.table(x1 = -1:1, x2 = list(1, 2, 3), extra2 = as.list(letters[4:6]), extra3 = list(1:3, 2:4, 3:5)) inst$eval_batch(xdt) expect_data_table(inst$archive$data, nrows = 6L) expect_equal(inst$archive$data$y, c(2, 0, 2, 2, 0, 2)) expect_equal(xdt, inst$archive$data[4:6, colnames(xdt), with = FALSE]) expect_equal(inst$archive$data$extra3[1:3], list(NULL, NULL, NULL)) expect_equal(inst$archive$data$extra1[4:6], rep(NA_character_, 3)) }) test_that("OptimInstance works with extras output", { fun_extra = function(xs) { y = sum(as.numeric(xs)^2) res = list(y = y, extra1 = runif(1), extra2 = list(a = runif(1), b = Sys.time())) if (y > 0.5) { # sometimes add extras res$extra3 = -y } return(res) } obj_extra = ObjectiveRFun$new(fun = fun_extra, domain = PS_2D, codomain = FUN_2D_CODOMAIN) inst = MAKE_INST(objective = obj_extra, search_space = PS_2D, terminator = 20L) xdt = data.table(x1 = c(0.25, 0.5), x2 = c(0.25, 0.5)) inst$eval_batch(xdt) expect_equal(xdt, inst$archive$data[, obj_extra$domain$ids(), with = FALSE]) expect_numeric(inst$archive$data$extra1, any.missing = FALSE, len = nrow(xdt)) expect_list(inst$archive$data$extra2, len = nrow(xdt)) xdt = data.table(x1 = c(0.75, 1), x2 = c(0.75, 1)) inst$eval_batch(xdt) expect_equal(inst$archive$data$extra3, c(NA, NA, -1.125, -2)) }) test_that("Terminator assertions work", { terminator = trm("perf_reached") expect_error(MAKE_INST_2D_2D(terminator = terminator), "does not support multi-crit optimization") }) test_that("objective_function works", { terminator = trm("evals", n_evals = 100) inst = MAKE_INST_1D(terminator = terminator) y = inst$objective_function(1) expect_equal(y, c(y = 1)) obj = ObjectiveRFun$new(fun = FUN_1D, domain = PS_1D_domain, codomain = ps(y = p_dbl(tags = "maximize"))) inst = MAKE_INST(objective = obj, search_space = PS_1D, terminator = terminator) y = inst$objective_function(1) expect_equal(y, c(y = -1)) z = optimize(inst$objective_function, lower = inst$search_space$lower, upper = inst$search_space$upper) expect_list(z, any.missing = FALSE, names = "named", len = 2L) search_space = ps( x1 = p_lgl(), x2 = p_dbl(lower = -1, upper = 1) ) inst = MAKE_INST(objective = obj, search_space = search_space, terminator = terminator) expect_error(inst$objective_function(1), "objective_function can only") }) test_that("search_space is optional", { inst = OptimInstanceBatchSingleCrit$new(objective = OBJ_1D, terminator = TerminatorEvals$new()) expect_identical(inst$search_space, OBJ_1D$domain) }) test_that("OptimInstaceSingleCrit does not work with codomain > 1", { expect_error(OptimInstanceBatchSingleCrit$new(objective = OBJ_2D_2D, terminator = trm("none")), "Codomain > 1") }) test_that("OptimInstanceBatchSingleCrit$eval_batch() throws and error if columns are missing", { inst = MAKE_INST_2D(20L) expect_error(inst$eval_batch(data.table(x1 = 0)), regexp = "include the elements", fixed = TRUE) }) test_that("domain, search_space and TuneToken work", { domain = ps( x1 = p_dbl(-10, 10), x2 = p_dbl(-5, 5) ) codomain = ps( y = p_dbl(tags = "maximize") ) objective = Objective$new( domain = domain, codomain = codomain ) # only domain instance = OptimInstanceBatchSingleCrit$new( objective = objective, terminator = trm("none") ) expect_equal(domain, instance$search_space) # search_space and domain search_space = ps( x1 = p_dbl(-10, 10) ) instance = OptimInstanceBatchSingleCrit$new( objective = objective, terminator = trm("none"), search_space = search_space ) expect_equal(search_space, instance$search_space) # TuneToken domain$values$x1 = to_tune() objective = Objective$new( domain = domain, codomain = codomain ) instance = OptimInstanceBatchSingleCrit$new( objective = objective, terminator = trm("none"), ) expect_equal(domain$search_space(), instance$search_space) # TuneToken and search_space expect_error(OptimInstanceBatchSingleCrit$new(objective = objective, terminator = trm("none"), search_space = search_space), regexp = "If the domain contains TuneTokens, you cannot supply a search_space") }) test_that("OptimInstanceBatchSingleCrit works with empty search space", { fun = function(xs) { c(y = 10 + rnorm(1)) } domain = ps() codomain = ps(y = p_dbl(tags = "minimize")) # objective objective = ObjectiveRFun$new(fun, domain, codomain) expect_numeric(objective$eval(list())) # instance instance = OptimInstanceBatchSingleCrit$new(objective, terminator = trm("evals", n_evals = 20)) instance$eval_batch(data.table()) expect_data_table(instance$archive$data, nrows = 1) # optimizer instance = OptimInstanceBatchSingleCrit$new(objective, terminator = trm("evals", n_evals = 20)) optimizer = opt("random_search") optimizer$optimize(instance) expect_data_table(instance$archive$data, nrows = 20) expect_equal(instance$result$x_domain[[1]], list()) }) test_that("deep clone works", { inst = MAKE_INST_2D(20L) inst_2 = inst$clone(deep = TRUE) expect_different_address(inst$objective, inst_2$objective) expect_different_address(inst$search_space, inst_2$search_space) expect_different_address(inst$archive, inst_2$archive) expect_different_address(inst$terminator, inst_2$terminator) }) test_that("$clear() method works", { inst = MAKE_INST_2D(1L) inst_copy = inst$clone(deep = TRUE) optimizer = opt("random_search") optimizer$optimize(inst) inst$clear() suppressWarnings(expect_equal(inst, inst_copy)) }) test_that("context is initialized correctly", { inst = MAKE_INST_2D(20L) optimizer = opt("random_search") optimizer$optimize(inst) expect_r6(inst$objective$context, "ContextBatch") }) test_that("context deep clone", { inst = MAKE_INST_2D(20L) optimizer = opt("random_search") optimizer$optimize(inst) expect_r6(inst$objective$context, "ContextBatch") inst_copy = inst$clone(deep = TRUE) expect_null(inst_copy$objective$context) })