test_that("OptimizerBatchIrace minimize works", { skip_if_not_installed("irace") search_space = domain = ps( x1 = p_dbl(-5, 10), x2 = p_dbl(0, 15) ) fun = function(xdt, instances) { data.table(y = branin(xdt[["x1"]], xdt[["x2"]], noise = as.numeric(instances))) } objective = ObjectiveRFunDt$new(fun = fun, domain = domain) instance = OptimInstanceBatchSingleCrit$new( objective = objective, search_space = search_space, terminator = trm("evals", n_evals = 1000)) optimizer = opt("irace", instances = rnorm(10, mean = 0, sd = 0.1)) x = capture.output(optimizer$optimize(instance)) # check archive columns archive = instance$archive$data expect_subset(c("race", "step", "configuration", "instance"), names(archive)) # check optimization direction # first elite of the first race should have the lowest average performance load(optimizer$param_set$values$logFile) elites = iraceResults$allElites aggr = instance$archive$data[race == 1, .(y = mean(y)), by = configuration] expect_equal(aggr[which.min(y), configuration], elites[[1]][1]) # the performance of the best configuration should be the mean performance across all evaluated instances configuration_id = instance$result$configuration expect_equal(unname(instance$result_y), mean(archive[configuration == configuration_id, y])) }) test_that("OptimizerBatchIrace maximize works", { skip_if_not_installed("irace") search_space = domain = ps( x1 = p_dbl(-5, 10), x2 = p_dbl(0, 15) ) fun = function(xdt, instances) { data.table(y = branin(xdt[["x1"]], xdt[["x2"]], noise = as.numeric(instances))) } codomain = ps(y = p_dbl(tags = "maximize")) objective = ObjectiveRFunDt$new(fun = fun, domain = domain, codomain = codomain) instance = OptimInstanceBatchSingleCrit$new( objective = objective, search_space = search_space, terminator = trm("evals", n_evals = 96)) optimizer = opt("irace", instances = rnorm(10, mean = 0, sd = 0.1)) x = capture.output(optimizer$optimize(instance)) # check archive columns archive = instance$archive$data expect_subset(c("race", "step", "configuration", "instance"), names(archive)) # check optimization direction # first elite of the first race should have the highest average performance load(optimizer$param_set$values$logFile) elites = iraceResults$allElites aggr = instance$archive$data[race == 1, .(y = mean(y)), by = configuration] expect_equal(aggr[which.max(y), configuration], elites[[1]][1]) # the performance of the best configuration should be the mean performance across all evaluated instances configuration_id = instance$result$configuration expect_equal(unname(instance$result_y), mean(archive[configuration == configuration_id, y])) }) test_that("OptimizerBatchIrace assertions works", { skip_if_not_installed("irace") search_space = domain = ps( x1 = p_dbl(-5, 10), x2 = p_dbl(0, 15) ) fun = function(xdt, instances) { data.table(y = branin(xdt[["x1"]], xdt[["x2"]], noise = as.numeric(instances))) } objective = ObjectiveRFunDt$new(fun = fun, domain = domain) # unsupported terminators instance = OptimInstanceBatchSingleCrit$new( objective = objective, search_space = search_space, terminator = trm("perf_reached", level = 0.1)) optimizer = opt("irace", instances = rnorm(10, mean = 0, sd = 0.1)) expect_error(optimizer$optimize(instance), regexp = " is not supported. Use instead", fixed = TRUE) }) test_that("OptimizerBatchIrace works with passed constants set", { skip_if_not_installed("irace") search_space = domain = ps( x1 = p_dbl(-5, 10), x2 = p_dbl(0, 15) ) fun = function(xdt, instances) { data.table(y = branin(xdt[["x1"]], xdt[["x2"]], noise = as.numeric(instances))) } objective = ObjectiveRFunDt$new(fun = fun, domain = domain, constants = ps(instances = p_uty())) instance = OptimInstanceBatchSingleCrit$new( objective = objective, search_space = search_space, terminator = trm("evals", n_evals = 96)) optimizer = opt("irace", instances = rnorm(10, mean = 0, sd = 0.1)) x = capture.output(optimizer$optimize(instance)) expect_data_table(instance$result, nrows = 1) }) test_that("OptimizerBatchIrace works without passed constants set", { skip_if_not_installed("irace") search_space = domain = ps( x1 = p_dbl(-5, 10), x2 = p_dbl(0, 15) ) fun = function(xdt, instances) { data.table(y = branin(xdt[["x1"]], xdt[["x2"]], noise = as.numeric(instances))) } objective = ObjectiveRFunDt$new(fun = fun, domain = domain) instance = OptimInstanceBatchSingleCrit$new( objective = objective, search_space = search_space, terminator = trm("evals", n_evals = 96)) optimizer = opt("irace", instances = rnorm(10, mean = 0, sd = 0.1)) x = capture.output(optimizer$optimize(instance)) expect_data_table(instance$result, nrows = 1) }) test_that("paradox_to_irace without dependencies", { # only ParamLgl pps = ps(lgl = p_lgl()) expect_irace_parameters(parameters = paradox_to_irace(pps, 4), names = "lgl", types = "c", domain = list(lgl = c("TRUE", "FALSE")), conditions = list(lgl = TRUE)) # only ParamUty pps = ps(uty = p_uty()) expect_error(paradox_to_irace(pps, 4), regexp = " not supported by ", fixed = TRUE) # mixed set pps = ps( dbl = p_dbl(lower = 0.1, upper = 0.3), int = p_int(lower = 1, upper = 9), fct = p_fct(levels = c("a", "b", "c")), lgl = p_lgl() ) expect_irace_parameters( parameters = paradox_to_irace(pps, 4), names = c("dbl", "int", "fct", "lgl"), types = c("r", "i", "c", "c"), domain = list(dbl = c(0.1, 0.3), int = c(1, 9), fct = c("a", "b", "c"), lgl = c("TRUE", "FALSE"))) # double checking previous bug in merge sort pps = ps( fct = p_fct(levels = c("a", "b", "c")), int1 = p_int(lower = 1, upper = 9), dbl = p_dbl(lower = 0.1, upper = 0.3), int2 = p_int(lower = 10, upper = 90), lgl = p_lgl() ) expect_irace_parameters( parameters = paradox_to_irace(pps, 4), names = c("fct", "int1", "dbl", "int2", "lgl"), types = c("c", "i", "r", "i", "c"), domain = list(fct = c("a", "b", "c"), int1 = c(1, 9), dbl = c(0.1, 0.3), int2 = c(10, 90), lgl = c("TRUE", "FALSE"))) }) test_that("paradox_to_irace with dependencies", { # one dependency pps = ps( a = p_lgl(), b = p_int(lower = 1, upper = 9, depends = a == TRUE) ) expect_irace_parameters( parameters = paradox_to_irace(pps, 4), names = c("a", "b"), types = c("c", "i"), domain = list(a = c("TRUE", "FALSE"), b = c(1, 9)), conditions = list(a = TRUE, b = expression(a == TRUE)), depends = list(a = character(0), b = "a"), hierarchy = c(1, 2)) # two dependencies pps = ps( a = p_lgl(), c = p_fct(levels = c("lvl1", "lvl2"), depends = b %in% c(2, 5, 7)), b = p_int(lower = 1, upper = 9, depends = a == TRUE) ) expect_irace_parameters( parameters = paradox_to_irace(pps, 4), names = c("a", "c", "b"), types = c("c", "c", "i"), domain = list(a = c("TRUE", "FALSE"), c = c("lvl1", "lvl2"), b = c(1, 9)), conditions = list( a = TRUE, b = expression(a == TRUE), c = expression(b %in% c(2, 5, 7))), depends = list(a = character(0), c = "b", b = "a"), hierarchy = c(1, 3, 2)) # three dependencies pps = ps( a = p_lgl(depends = c == "lvl1"), b = p_int(lower = 1, upper = 9, depends = a == TRUE), c = p_fct(levels = c("lvl1", "lvl2")), d = p_dbl(lower = 0, upper = 1, depends = c %in% c("lvl1", "lvl2")) ) expect_irace_parameters( parameters = paradox_to_irace(pps, 4), names = c("a", "b", "c", "d"), types = c("c", "i", "c", "r"), domain = list( a = c("TRUE", "FALSE"), b = c(1, 9), c = c("lvl1", "lvl2"), d = c(0, 1)), conditions = list( c = TRUE, a = expression(c == "lvl1"), d = expression(c %in% c("lvl1", "lvl2")), b = expression(a == TRUE)), depends = list(a = "c", b = "a", c = character(0), d = "c"), hierarchy = c(2, 3, 1, 2)) }) test_that("paradox_to_irace works with parameters with multiple dependencies", { pps = ps( a = p_lgl(), b = p_lgl(), c = p_fct(levels = c("lvl1", "lvl2", "lvl3")), d = p_fct(levels = c("lvl1", "lvl2", "lvl3", "lvl4")), e = p_int(lower = 1, upper = 9, depends = a == TRUE), f = p_int(lower = 1, upper = 9, depends = a == TRUE && b == TRUE), g = p_int(lower = 2, upper = 3, depends = c %in% c("lvl2", "lvl3")), h = p_int(lower = 2, upper = 3, depends = c %in% c("lvl2", "lvl3") && d %in% c("lvl3", "lvl4")) ) expect_irace_parameters( parameters = paradox_to_irace(pps, 4), names = c("a", "b", "c", "d", "e", "f", "g", "h"), types = c("c", "c", "c", "c", "i", "i", "i", "i"), domain = list(a = c("TRUE", "FALSE"), b = c("TRUE", "FALSE"), c = c("lvl1", "lvl2", "lvl3"), d = c("lvl1", "lvl2", "lvl3", "lvl4"), e = c(1, 9), f = c(1, 9), g = c(2, 3), h = c(2, 3)), conditions = list(a = TRUE, b = TRUE, c = TRUE, d = TRUE, e = expression(a == TRUE), f = expression(a == TRUE & b == TRUE), g = expression(c %in% c("lvl2", "lvl3")), h = expression(c %in% c("lvl2", "lvl3") & d %in% c("lvl3", "lvl4"))), depends = list(a = character(0), b = character(0), c = character(0), d = character(0), e = "a", f = c("a", "b"), g = "c", h = c("c", "d")), hierarchy = c(1, 1, 1, 1, 2, 2, 2, 2)) })