# bbn.sensitivity ------------------------------------------------ context("Testing bbn.sensitivity Functionality") # Use example data provided by the bbnet package. # Test that bbn.sensitivity requires at least one key variable test_that("bbn.sensitivity requires at least one key variable", { data("my_BBN") # Make sure the 'my_BBN' dataset is loaded or defined appropriately expect_error( bbn.sensitivity(bbn.model = my_BBN, boot_max = 100), "Need to input at least one key variable" ) }) # Test for warning on more than three key variables test_that("Warns on more than three key variables", { data("my_BBN") # Ensure this dataset is correctly defined or loaded expect_warning( bbn.sensitivity(bbn.model = my_BBN, 'Limpet', 'Green Algae', 'Periwinkle', 'Biofilm', boot_max = 100), "Recommend a maximum of three key variables" ) }) # Test function runs without error with correct input test_that("bbn.sensitivity runs correctly with valid inputs", { data("my_BBN") # Ensure 'my_BBN' is available expect_output( bbn.sensitivity(bbn.model = my_BBN, 'Limpet', boot_max = 100) ) }) # Test handling of incorrect 'boot_max' test_that("bbn.sensitivity handles incorrect boot_max value", { data("my_BBN") # Ensure 'my_BBN' is available expect_error( bbn.sensitivity(bbn.model = my_BBN, 'Limpet', boot_max = -100), "'boot_max' must be a positive integer" ) })