# bbn.predict ---------------------------------------------------- context("Testing bbn.predict Functionality") # This use example data provided by the bbnet package. test_that("bbn.predict works with a single scenario", { data("my_BBN") data("dogwhelk") expect_output(bbn.predict(bbn.model = my_BBN, priors1 = dogwhelk, figure = 0), NULL) }) test_that("bbn.predict handles multiple scenarios", { data("my_BBN") data("dogwhelk") data("winkle") data("combined") expect_output(bbn.predict(bbn.model = my_BBN, priors1 = dogwhelk, priors2 = winkle, priors3 = combined, figure = 0), NULL) }) test_that("bbn.predict generates no plot when figure is set to 0", { data("my_BBN") data("dogwhelk") expect_output(bbn.predict(bbn.model = my_BBN, priors1 = dogwhelk, figure = 0)) }) test_that("bbn.predict saves plot to PDF when figure is 1", { data("my_BBN") data("dogwhelk") # Ensure any previous test file is removed test_plot_path <- "BBN_Output_RenameMe.pdf" if(file.exists(test_plot_path)) { file.remove(test_plot_path) } bbn.predict(bbn.model = my_BBN, priors1 = dogwhelk, figure = 1) # Check if the file now exists expect_true(file.exists(test_plot_path)) # Cleanup: remove the test plot file after checking file.remove(test_plot_path) }) test_that("bbn.predict runs without error for figure = 2", { data("my_BBN") data("dogwhelk") # This test ensures the function call does not result in an error. It does not validate the actual plot output. expect_output(bbn.predict(bbn.model = my_BBN, priors1 = dogwhelk, figure = 2)) }) test_that("bbn.predict handles bootstrapping with boot_max > 1", { data("my_BBN") data("dogwhelk") # Ensure it runs without error. expect_output(bbn.predict(bbn.model = my_BBN, priors1 = dogwhelk, boot_max = 10, figure = 0)) })