library(bbmle) x <- 0:10 y <- c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8) d <- data.frame(x,y) LL <- function(ymax=15, xhalf=6) -sum(stats::dpois(y, lambda=ymax/(1+x/xhalf), log=TRUE)) options(digits=3) mfit0 <- mle2(y~dpois(lambda=exp(interc)), start=list(interc=log(mean(y))),data=d) mfit1 <- mle2(y~dpois(lambda=exp(loglambda)), start=list(loglambda=log(mean(y))),data=d) coef(mfit0) residuals(mfit0) AIC(mfit0) BIC(mfit0) vcov(mfit0) ## fitted(mfit0) ## fails, looks for default value predict(mfit0) ## FIXME: doesn't expand properly (need implicit lambda~1 formula??) set.seed(1001) simulate(mfit0) anova(mfit0,mfit1) summary(mfit0) summary(mfit1)