library(bbmle) library(testthat) x <- 0:10 y <- c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8) d <- data.frame(x,y) LL <- function(ymax=15, xhalf=6) -sum(stats::dpois(y, lambda=ymax/(1+x/xhalf), log=TRUE)) mfit0 <- mle2(y~dpois(lambda=exp(interc)), start=list(interc=log(mean(y))),data=d) mfit1 <- mle2(y~dpois(lambda=exp(loglambda)), start=list(loglambda=log(mean(y))),data=d) gfit0 <- glm(y~1,family=poisson) expect_equal(unname(coef(mfit0)),unname(coef(gfit0))) expect_equal(logLik(mfit0),logLik(gfit0)) expect_equal(predict(mfit0), ## only one value for now unique(predict(gfit0,type="response"))) ## FIXME: residuals are backwards expect_equal(residuals(mfit0,type="response"),unname(residuals(gfit0,type="response"))) ## FIXME: residuals are backwards expect_equal(residuals(mfit0,type="pearson"),unname(residuals(gfit0,type="pearson")))