library(bbmle) set.seed(101) z = rpois(100,lambda=5) m1 = mle2(z~dpois(lambda=L),start=list(L=4),data=data.frame(z)) q1 <- qAICc(m1,nobs=100,dispersion=1.2) qAICc(m1,m1,nobs=100,dispersion=1.2) ## !! i1 <- ICtab(m1,type="qAICc",dispersion=1.2,nobs=100, base=TRUE) m2 = glm(z~1,family=poisson) q2 <- qAICc(m2,nobs=100,dispersion=1.2) ## test that dAIC ignores m3 <- glm(z~1,family=quasipoisson) aa <- AICtab(m1,m2,m3,weights=TRUE) stopifnot(any(!is.na(aa$dAIC)), any(!is.na(aa$weight))) set.seed(101) x <- rnorm(100) dd <- data.frame(y=rnorm(100,2+3*x,sd=1),x) m4A <- lm(y~x,dd) m4B <- mle2(y~dnorm(mean=a+b*x,sd=exp(logsd)), data=dd, start=list(a=1,b=1,logsd=0)) ## cosmetic differences only stopifnot(all.equal(AIC(m4A,m4B)[,"AIC"], AIC(m4B,m4A)[,"AIC"]))