test_that("si.numeric", { skip_if_not_installed("logspline") set.seed(333) prior <- distribution_normal(1000, mean = 0, sd = 1) posterior <- distribution_normal(1000, mean = 0.5, sd = 0.3) expect_warning( { res <- si(posterior, prior) }, regexp = "40" ) expect_equal(res$CI_low, 0.043, tolerance = 0.02) expect_equal(res$CI_high, 1.053103, tolerance = 0.02) expect_s3_class(res, "bayestestR_si") res <- si(posterior, prior, BF = 3, verbose = FALSE) expect_equal(res$CI_low, 0.35, tolerance = 0.02) expect_equal(res$CI_high, 0.759, tolerance = 0.02) res <- si(posterior, prior, BF = 100, verbose = FALSE) expect_true(all(is.na(res$CI_low))) expect_true(all(is.na(res$CI_high))) res <- si(posterior, prior, BF = c(1 / 3, 1, 3), verbose = FALSE) expect_equal(res$CI, c(1 / 3, 1, 3), tolerance = 0.02) expect_equal(res$CI_low, c(-0.1277, 0.0426, 0.3549), tolerance = 0.02) expect_equal(res$CI_high, c(1.213, 1.053, 0.759), tolerance = 0.02) }) test_that("si.rstanarm", { skip_on_cran() skip_if_not_installed("rstanarm") data(sleep) contrasts(sleep$group) <- contr.equalprior_pairs # See vignette stan_model <- suppressWarnings(rstanarm::stan_glmer(extra ~ group + (1 | ID), data = sleep, refresh = 0)) set.seed(333) stan_model_p <- update(stan_model, prior_PD = TRUE) res1 <- si(stan_model, stan_model_p, verbose = FALSE) set.seed(333) res2 <- si(stan_model, verbose = FALSE) expect_s3_class(res1, "bayestestR_si") expect_equal(res1, res2, ignore_attr = TRUE) skip_if_not_installed("emmeans") set.seed(123) group_diff <- suppressWarnings(pairs(emmeans::emmeans(stan_model, ~group))) res3 <- si(group_diff, prior = stan_model, verbose = FALSE) expect_equal(res3$CI_low, -2.746, tolerance = 0.3) expect_equal(res3$CI_high, -0.4, tolerance = 0.3) })