test_that("p_significance", { # numeric set.seed(333) x <- distribution_normal(10000, 1, 1) ps <- p_significance(x) expect_equal(as.numeric(ps), 0.816, tolerance = 0.1) expect_s3_class(ps, "p_significance") expect_s3_class(ps, "data.frame") expect_identical(dim(ps), c(1L, 2L)) expect_identical( capture.output(print(ps)), c( "Practical Significance (threshold: 0.10)", "", "Parameter | ps", "----------------", "Posterior | 0.82" ) ) x <- data.frame(replicate(4, rnorm(100))) pd <- p_significance(x) expect_identical(dim(pd), c(4L, 2L)) }) test_that("stanreg", { skip_if_offline() skip_if_not_or_load_if_installed("rstanarm") m <- insight::download_model("stanreg_merMod_5") expect_equal( p_significance(m, effects = "all")$ps[1], 0.99, tolerance = 1e-2 ) }) test_that("brms", { skip_if_offline() skip_if_not_or_load_if_installed("rstanarm") m2 <- insight::download_model("brms_1") expect_equal( p_significance(m2, effects = "all")$ps, c(1.0000, 0.9985, 0.9785), tolerance = 0.01 ) })