skip_on_os("linux") test_that("p_direction", { skip_if_not_or_load_if_installed("BayesFactor") set.seed(333) x <- BayesFactor::correlationBF(y = iris$Sepal.Length, x = iris$Sepal.Width) expect_equal(as.numeric(p_direction(x)), 0.9225, tolerance = 1) }) test_that("p_direction: BF t.test one sample", { skip_if_not_or_load_if_installed("BayesFactor") data(sleep) diffScores <- sleep$extra[1:10] - sleep$extra[11:20] x <- BayesFactor::ttestBF(x = diffScores) expect_equal(as.numeric(p_direction(x)), 0.99675, tolerance = 1) }) test_that("p_direction: BF t.test two samples", { skip_if_not_or_load_if_installed("BayesFactor") data(chickwts) chickwts <- chickwts[chickwts$feed %in% c("horsebean", "linseed"), ] chickwts$feed <- factor(chickwts$feed) x <- BayesFactor::ttestBF(formula = weight ~ feed, data = chickwts) expect_equal(as.numeric(p_direction(x)), 1, tolerance = 1) }) test_that("p_direction: BF t.test meta-analytic", { skip_if_not_or_load_if_installed("BayesFactor") t <- c(-0.15, 2.39, 2.42, 2.43) N <- c(100, 150, 97, 99) x <- BayesFactor::meta.ttestBF(t = t, n1 = N, rscale = 1) expect_equal(as.numeric(p_direction(x)), 0.99975, tolerance = 1) }) skip_if_not_or_load_if_installed("BayesFactor") # --------------------------- # "BF ANOVA" data(ToothGrowth) ToothGrowth$dose <- factor(ToothGrowth$dose) levels(ToothGrowth$dose) <- c("Low", "Medium", "High") x <- BayesFactor::anovaBF(len ~ supp * dose, data = ToothGrowth) test_that("p_direction", { expect_equal(as.numeric(p_direction(x)), c(1, 0.95675, 0.95675, 1, 1), tolerance = 0.1) }) # BF ANOVA Random --------------------------- data(puzzles) x <- BayesFactor::anovaBF(RT ~ shape * color + ID, data = puzzles, whichRandom = "ID") test_that("p_direction", { expect_equal(as.numeric(p_direction(x)), c( 1, 0.98125, 0.98125, 0.995, 0.67725, 0.8285, 0.68425, 0.99975, 0.6725, 0.9995, 0.60275, 0.99525, 0.7615, 0.763, 1, 1, 1, 1 ), tolerance = 0.1) }) # --------------------------- # "BF lm" x <- BayesFactor::lmBF(len ~ supp + dose, data = ToothGrowth) test_that("p_direction", { expect_equal(as.numeric(p_direction(x)), c(1, 0.9995, 0.9995, 1, 0.903, 1, 1, 1, 1), tolerance = 0.1) }) x2 <- BayesFactor::lmBF(len ~ supp + dose + supp:dose, data = ToothGrowth) x <- x / x2 test_that("p_direction", { expect_equal(as.numeric(p_direction(x)), c(1, 0.99925, 0.99925, 1, 0.89975, 1, 1, 1, 1), tolerance = 0.1) }) test_that("rope_range", { skip_if_not_or_load_if_installed("BayesFactor") x <- BayesFactor::lmBF(len ~ supp + dose, data = ToothGrowth) expect_equal(rope_range(x)[2], sd(ToothGrowth$len) / 10, tolerance = 1e-4) x <- BayesFactor::ttestBF( ToothGrowth$len[ToothGrowth$supp == "OJ"], ToothGrowth$len[ToothGrowth$supp == "VC"] ) expect_equal(rope_range(x)[2], sd(ToothGrowth$len) / 10, tolerance = 1e-4) x <- BayesFactor::ttestBF(formula = len ~ supp, data = ToothGrowth) expect_equal(rope_range(x)[2], sd(ToothGrowth$len) / 10, tolerance = 1e-4) # else x <- BayesFactor::correlationBF(ToothGrowth$len, as.numeric(ToothGrowth$dose)) expect_equal(rope_range(x, verbose = FALSE), c(-0.05, 0.05), tolerance = 1e-4) })