test_that("mixture model works", { #load data data(tracks.list) tracks.list<- lapply(tracks.list, function(x) x[1:250,]) #convert from list to data frame tracks.list<- dplyr::bind_rows(tracks.list) #only retain id and discretized step length (SL) and turning angle (TA) columns tracks<- subset(tracks.list, select = c(SL, TA)) set.seed(1) # Define model params alpha=0.1 ngibbs=1000 nburn=ngibbs/2 nmaxclust=7 dat.res<- cluster_obs(dat = tracks, alpha = alpha, ngibbs = ngibbs, nmaxclust = nmaxclust, nburn = nburn) expect_length(dat.res, 6) expect_type(dat.res$loglikel, "double") expect_is(dat.res$theta, "matrix") expect_length(dat.res$phi, 2) expect_type(dat.res$phi, "list") expect_length(dat.res$z.MAP, nrow(tracks)) expect_equal(rowSums(dat.res$z.posterior), rep(nburn, nrow(tracks))) })