R Under development (unstable) (2023-10-17 r85341 ucrt) -- "Unsuffered Consequences" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > start.test <- function(name, wpp.year = NULL) cat('\n<=== Starting test of', name, if(!is.null(wpp.year)) paste0('(WPP ', wpp.year, ')') else '', '====\n') > test.ok <- function(name) cat('\n==== Test of', name, 'OK.===>\n') > > test.load.UNtfr <- function(wpp.year=2008) { + # read the UN TFR input file + test.name <- 'loading UN TFR file' + start.test(test.name, wpp.year) + tfr <- bayesTFR:::read.UNtfr(wpp.year) + stopifnot(length(dim(tfr$data.object$data))==2) + stopifnot(dim(tfr$data.object$data)[1] > 150) + stopifnot(is.element('last.observed', colnames(tfr$data.object$data))) + stopifnot(length(tfr$data.object$replaced) == 0) + stopifnot(length(tfr$data.object$added) == 0) + test.ok(test.name) + } > > test.load.UNtfr.and.my.tfr.file <- function() { + # read the UN TFR input file for WPP 2019 + test.name <- 'loading UN TFR file and my_tfr_file' + start.test(test.name) + my.tfr.file <- file.path(find.package("bayesTFR"), 'extdata', 'my_tfr_template.txt') + tfr <- bayesTFR:::read.UNtfr(2019, my.tfr.file=my.tfr.file) + stopifnot(length(dim(tfr$data.object$data))==2) + stopifnot(length(dim(tfr$suppl.data.object$data))==2) + stopifnot(dim(tfr$data.object$data)[1] == 249) + stopifnot(dim(tfr$suppl.data.object$data)[1] == 104) + stopifnot(is.element('last.observed', colnames(tfr$data.object$data))) + stopifnot(length(tfr$data.object$replaced) == 1) + stopifnot(length(tfr$data.object$added) == 0) + stopifnot(length(tfr$suppl.data.object$replaced) == 0) + stopifnot(length(tfr$suppl.data.object$added) == 1) + test.ok(test.name) + } > > test.load.UNlocations <- function(wpp.year=2012) { + test.name <- 'loading WPP location file' + start.test(test.name, wpp.year) + tfr <- suppressWarnings(bayesTFR:::read.UNtfr(wpp.year)) # if wpp.year=2008, there are warnings about non-existent tfr_supplemental dataset + locs <- bayesTFR:::read.UNlocations(tfr$data.object$data, wpp.year) # this could give warnings if there are duplicates in UNlocations + stopifnot(length(dim(locs$loc_data)) == 2) + stopifnot(all(is.element(c('country_code', 'include_code'), colnames(locs$loc_data)))) + stopifnot(dim(locs$loc_data)[1] > 200) + stopifnot(all(is.element(intersect(c(0,1,2), locs$loc_data[,'include_code']), c(0,1,2)))) + test.ok(test.name) + + test.name <- 'loading WPP location file with my.locations.file' + start.test(test.name, wpp.year) + new.locations <- data.frame(country_code=9999, name='my location', reg_code=9999, area_code=8888, reg_name='my region', area_name='my area', location_type=4) + f <- tempfile() + write.table(new.locations, file=f, sep='\t', row.names=FALSE) + mylocs <- bayesTFR:::read.UNlocations(tfr$data.object$data, wpp.year, my.locations.file=f) + # stopifnot(dim(mylocs$loc_data)[1] == dim(locs$loc_data)[1]+1) # has one country more + # stopifnot(is.element(9999, mylocs$loc_data$country_code)) + e <- new.env() + do.call("data", list("UNlocations", package=paste0("wpp", wpp.year), envir=e)) + # this for some reason causes a warning "‘match’ requires vector arguments" + #data("UNlocations", package=paste0("wpp", wpp.year), envir=e) + my.locations <- e$UNlocations[1:100,] + my.locations[which(my.locations$location_type == 4)[1],'area_code'] <- 123456 + write.table(my.locations, file=f, sep='\t', row.names=FALSE) + mylocs <- bayesTFR:::read.UNlocations(tfr$data.object$data, wpp.year, my.locations.file=f) + stopifnot(is.element(123456, mylocs$loc_data$area_code)) + test.ok(test.name) + unlink(f) + } > > test.create.tfr.matrix <- function(wpp.year=2008) { + test.name <- 'creating TFR matrix' + start.test(test.name, wpp.year) + tfr <- bayesTFR:::read.UNtfr(wpp.year) + locs <- bayesTFR:::read.UNlocations(tfr$data.object$data, wpp.year) + tfr.and.regions <- bayesTFR:::get.TFRmatrix.and.regions(tfr$data.object$data, locs$loc_data, + present.year=2009) + tfr.matrix <- tfr.and.regions$tfr_matrix + stopifnot(dim(tfr.matrix)[1] == 12) + stopifnot(rownames(tfr.matrix)[12] == '2008') + test.ok(test.name) + } > > test.run.mcmc.simulation <- function(compression='None', wpp.year = 2019) { + sim.dir <- tempfile() + + # run MCMC + test.name <- 'running Phase II MCMC' + start.test(test.name, wpp.year) + m <- run.tfr.mcmc(iter=5, nr.chains=1, output.dir=sim.dir, start.year=1950, + compression.type=compression, wpp.year = wpp.year) + stopifnot(m$mcmc.list[[1]]$finished.iter == 5) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 5) + stopifnot(bayesTFR:::tfr.set.identical(m, get.tfr.mcmc(sim.dir), include.output.dir=FALSE)) + test.ok(test.name) + + # continue MCMC + test.name <- 'continuing Phase II MCMC' + start.test(test.name, wpp.year) + m <- continue.tfr.mcmc(iter=5, output.dir=sim.dir) + stopifnot(m$mcmc.list[[1]]$finished.iter == 10) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 10) + stopifnot(!is.element(900, m$meta$regions$country_code)) # 'World' should not be included + test.ok(test.name) + + # run MCMC for an aggregation + test.name <- 'running Phase II MCMC for extra areas' + start.test(test.name, wpp.year) + data.dir <- file.path(find.package("bayesTFR"), 'extdata') + m <- run.tfr.mcmc.extra(sim.dir=sim.dir, + my.tfr.file=file.path(data.dir, 'my_tfr_template.txt'), burnin=0) + stopifnot(is.element(900, m$meta$regions$country_code)) # 'World' should be included + test.ok(test.name) + + test.name <- 'running Phase III MCMC' + start.test(test.name, wpp.year) + m3 <- run.tfr3.mcmc(sim.dir=sim.dir, iter=20, thin=1, nr.chains=2, compression.type=compression) + stopifnot(m3$mcmc.list[[1]]$finished.iter == 20) + stopifnot(get.total.iterations(m3$mcmc.list, 0) == 40) + stopifnot(bayesTFR:::tfr.set.identical(m3, get.tfr3.mcmc(sim.dir), include.output.dir=FALSE)) + test.ok(test.name) + + # continue MCMC + test.name <- 'continuing Phase III MCMC' + start.test(test.name, wpp.year) + m3 <- continue.tfr3.mcmc(sim.dir=sim.dir, iter=5) + stopifnot(m3$mcmc.list[[1]]$finished.iter == 25) + stopifnot(get.total.iterations(m3$mcmc.list, 0) == 50) + test.ok(test.name) + + # run prediction + test.name <- 'running projections with classic AR(1)' + start.test(test.name, wpp.year) + pred <- tfr.predict(m, burnin=0, use.tfr3=FALSE, rho=NULL, sigmaAR1=NULL, verbose=FALSE) + spred <- summary(pred) + stopifnot(spred$nr.traj == 10) + stopifnot(is.na(pred$thin3)) + stopifnot(!is.element(903, pred$mcmc.set$regions$country_code)) + test.ok(test.name) + + rho <- pred$rho + sigma <- pred$sigmaAR1 + mu <- pred$mu + + test.name <- 'running projections with BHM for phase III' + start.test(test.name, wpp.year) + pred <- tfr.predict(m, burnin=0, use.tfr3=TRUE, burnin3=5, verbose=FALSE, replace.output=TRUE) + spred <- summary(pred) + stopifnot(spred$nr.traj == 10) + stopifnot(pred$thin3 == 4) + stopifnot(!is.element(903, pred$mcmc.set$regions$country_code)) + test.ok(test.name) + npred <- dim(pred$tfr_matrix_reconstructed)[2] + + # run MCMC for another aggregation + test.name <- 'running projections on extra areas' + start.test(test.name, wpp.year) + m <- run.tfr.mcmc.extra(sim.dir=sim.dir, countries=903, burnin=0) + # run prediction only for the area 903 + pred <- tfr.predict.extra(sim.dir=sim.dir, verbose=FALSE) + stopifnot(is.element(903, pred$mcmc.set$meta$regions$country_code)) + stopifnot(dim(pred$tfr_matrix_reconstructed)[2] == npred+1) + stopifnot(!is.null(bayesTFR:::get.trajectories(pred, 903)$trajectories)) + stopifnot(pred$use.tfr3) + test.ok(test.name) + + test.name <- 'estimating AR(1) parameters' + start.test(test.name, wpp.year) + ar1pars <- get.ar1.parameters(mu, m$meta) + stopifnot(rho==ar1pars$rho) + stopifnot(sigma==ar1pars$sigmaAR1) + test.ok(test.name) + + test.name <- 'shifting the median' + start.test(test.name, wpp.year) + projs <- summary(pred, country='Uganda')$projections + tfr.median.shift(sim.dir, country='Uganda', shift=1.5, from=2051, to=2080) + shifted.pred <- get.tfr.prediction(sim.dir) + shifted.projs <- summary(shifted.pred, country='Uganda')$projections + stopifnot(all(projs[8:13,c(1,3:dim(projs)[2])]+1.5 == shifted.projs[8:13,c(1,3:dim(projs)[2])])) + stopifnot(all(projs[c(1:7, 14:17),c(1,3:dim(projs)[2])] == shifted.projs[c(1:7, 14:17),c(1,3:dim(projs)[2])])) + test.ok(test.name) + + test.name <- 'resetting the median' + start.test(test.name, wpp.year) + shifted.pred <- tfr.median.shift(sim.dir, country='Uganda', reset = TRUE) + shifted.projs <- summary(shifted.pred, country='Uganda')$projections + stopifnot(all(projs[,c(1,3:dim(projs)[2])] == shifted.projs[,c(1,3:dim(projs)[2])])) + test.ok(test.name) + + test.name <- 'setting the median' + start.test(test.name, wpp.year) + expert.values <- c(2.3, 2.4, 2.4) + cobj <- get.country.object('Uganda', m$meta) + shift <- expert.values - pred$quantiles[cobj$index, '0.5',2:4] + mod.pred <- tfr.median.set(sim.dir, country='Uganda', values=expert.values, years=2024) + mod.projs <- summary(mod.pred, country='Uganda')$projections + stopifnot(all(mod.projs[2:4, c(1,3:dim(projs)[2])]==projs[2:4, c(1,3:dim(projs)[2])]+shift)) + stopifnot(all(mod.projs[c(1,5:17), c(1,3:dim(projs)[2])]==projs[c(1,5:17), c(1,3:dim(projs)[2])])) + test.ok(test.name) + + test.name <- 'shifting medians to WPP' + tfr.shift.prediction.to.wpp(sim.dir) + shifted.pred <- get.tfr.prediction(sim.dir) + shifted.projs <- summary(shifted.pred, country='Niger')$projections + shifted.projs <- data.table::data.table(shifted.projs)[, year := as.integer(rownames(shifted.projs))] + e <- new.env() + data("tfrprojMed", package = paste0("wpp", wpp.year), envir = e) + wpptfr <- data.table::data.table(e$tfrprojMed) + wpptfrl <- data.table::melt(wpptfr, id.vars = c("country_code", "name"), variable.name = "period") + wpptfrl <- wpptfrl[, year := as.integer(substr(period, 1,4)) + 3][name == "Niger"] + dat <- merge(wpptfrl, shifted.projs[, c("year", "50%"), with = FALSE], by = "year") + stopifnot(all.equal(dat$value, dat[, `50%`])) + stopifnot(!is.null(shifted.pred$median.shift)) + stopifnot(length(shifted.pred$median.shift) == nrow(get.countries.table(shifted.pred))) + test.ok(test.name) + + test.name <- 'resetting all countries' + tfr.median.reset(sim.dir) + new.pred <- get.tfr.prediction(sim.dir) + stopifnot(is.null(new.pred$median.shift)) + test.ok(test.name) + + unlink(sim.dir, recursive=TRUE) + } > > test.thinned.simulation <- function(compression='None', wpp.year = 2019) { + sim.dir <- tempfile() + # run MCMC + test.name <- 'running thinned Phase II MCMC' + start.test(test.name, wpp.year) + m <- run.tfr.mcmc(iter=10, nr.chains=2, output.dir=sim.dir, thin=2, compression.type=compression, + wpp.year = wpp.year) + stopifnot(m$mcmc.list[[1]]$finished.iter == 10) + stopifnot(m$mcmc.list[[1]]$length == 6) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 20) + stopifnot(get.stored.mcmc.length(m$mcmc.list, burnin=4) == 6) + test.ok(test.name) + + # continue MCMC + test.name <- 'continuing thinned Phase II MCMC' + start.test(test.name, wpp.year) + m <- continue.tfr.mcmc(iter=10, output.dir=sim.dir) + stopifnot(m$mcmc.list[[1]]$finished.iter == 20) + stopifnot(m$mcmc.list[[1]]$length == 11) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 40) + stopifnot(get.stored.mcmc.length(m$mcmc.list, burnin=4) == 16) + test.ok(test.name) + + # run MCMC for an aggregation + test.name <- 'running thinned MCMC for extra areas' + start.test(test.name, wpp.year) + data.dir <- file.path(find.package("bayesTFR"), 'extdata') + m <- run.tfr.mcmc.extra(sim.dir=sim.dir, my.tfr.file=file.path(data.dir, 'my_tfr_template.txt'), burnin=0) + stopifnot(is.element(900, m$meta$regions$country_code)) # 'World' should be included + test.ok(test.name) + + test.name <- 'running thinned Phase III MCMC' + start.test(test.name, wpp.year) + m3 <- run.tfr3.mcmc(sim.dir=sim.dir, iter=20, nr.chains=3, thin=4, compression.type=compression) + stopifnot(m3$mcmc.list[[1]]$finished.iter == 20) + stopifnot(m3$mcmc.list[[1]]$length == 6) + stopifnot(get.total.iterations(m3$mcmc.list, 0) == 60) + stopifnot(get.stored.mcmc.length(m3$mcmc.list, burnin=4) == 12) + test.ok(test.name) + + # continue MCMC + test.name <- 'continuing thinned Phase III MCMC' + start.test(test.name, wpp.year) + m3 <- continue.tfr3.mcmc(sim.dir=sim.dir, iter=5) + stopifnot(m3$mcmc.list[[1]]$finished.iter == 25) + stopifnot(m3$mcmc.list[[1]]$length == 7) + stopifnot(get.total.iterations(m3$mcmc.list, 0) == 75) + stopifnot(get.stored.mcmc.length(m3$mcmc.list, burnin=4) == 15) + test.ok(test.name) + + # run prediction + test.name <- 'running thinned projections' + start.test(test.name, wpp.year) + pred <- tfr.predict(m, burnin=5, burnin3=3, verbose=FALSE) + spred <- summary(pred) + stopifnot(spred$nr.traj == 16) # 2x8 + stopifnot(pred$thin3 == 4) + stopifnot(pred$mcmc.set$mcmc.list[[1]]$finished.iter == 16) + stopifnot(length(pred$mcmc.set$mcmc.list) == 1) + npred <- dim(pred$tfr_matrix_reconstructed)[2] + test.ok(test.name) + + test.name <- 'running thinned projections on extra areas' + start.test(test.name, wpp.year) + m <- run.tfr.mcmc.extra(sim.dir=sim.dir, countries=903, burnin=5) + # run prediction only for the area 903 + pred <- tfr.predict.extra(sim.dir=sim.dir, verbose=FALSE) + stopifnot(dim(pred$tfr_matrix_reconstructed)[2] == npred+1) + test.ok(test.name) + + test.name <- 'plotting DL curves with thinned MCMC' + start.test(test.name, wpp.year) + filename <- tempfile() + png(filename=filename) + DLcurve.plot(m, 903, burnin=5, nr.curves=5) + dev.off() + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + test.ok(test.name) + + test.name <- 'plotting TFR trajectories with thinned MCMC' + start.test(test.name, wpp.year) + filename <- tempfile() + png(filename=filename) + tfr.trajectories.plot(pred, 900, nr.traj=5, pi=c(70,65)) + dev.off() + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + test.ok(test.name) + + test.name <- 'getting Phase II parameter traces with thinned MCMC' + start.test(test.name, wpp.year) + traces <- get.tfr.parameter.traces(m$mcmc.list, burnin=5, + thinning.index=c(1, 3, 10, 15)) + stopifnot(nrow(traces)==4) + test.ok(test.name) + + test.name <- 'getting Phase III parameter traces with thinned MCMC' + start.test(test.name, wpp.year) + m3 <- get.tfr3.mcmc(sim.dir) + traces <- get.tfr3.parameter.traces(m3$mcmc.list, burnin=10, + thinning.index=c(1, 3, 5, 10)) + stopifnot(nrow(traces)==4) + test.ok(test.name) + + test.name <- 'plotting Phase II parameter density' + start.test(test.name, wpp.year) + filename <- tempfile() + png(filename=filename) + tfr.pardensity.plot(m, burnin=10) + dev.off() + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + test.ok(test.name) + + test.name <- 'plotting Phase III parameter density' + start.test(test.name, wpp.year) + filename <- tempfile() + png(filename=filename) + tfr3.pardensity.plot(m3, burnin=10) + dev.off() + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + test.ok(test.name) + + unlink(sim.dir, recursive=TRUE) + } > > test.run.mcmc.simulation.auto <- function() { + sim.dir <- tempfile() + # run MCMC + test.name <- 'running auto Phase II MCMC' + start.test(test.name) + m <- run.tfr.mcmc(iter='auto', output.dir=sim.dir, + auto.conf=list(iter=10, iter.incr=5, max.loops=3, nr.chains=2, thin=1, burnin=5)) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 40) + test.ok(test.name) + + test.name <- 'continuing auto Phase II MCMC' + start.test(test.name) + m <- continue.tfr.mcmc(iter='auto', output.dir=sim.dir, auto.conf=list(max.loops=2)) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 60) + test.ok(test.name) + + test.name <- 'running auto Phase III MCMC' + start.test(test.name) + m3 <- run.tfr3.mcmc(sim.dir=sim.dir, iter='auto', thin=1, + auto.conf=list(iter=10, iter.incr=5, max.loops=3, nr.chains=2, thin=1, burnin=5)) + stopifnot(get.total.iterations(m3$mcmc.list, 0) == 40) + test.ok(test.name) + + test.name <- 'continuing auto Phase III MCMC' + start.test(test.name) + m3 <- continue.tfr3.mcmc(sim.dir=sim.dir, iter='auto', auto.conf=list(max.loops=2)) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 60) + test.ok(test.name) + + unlink(sim.dir, recursive=TRUE) + } > > test.run.mcmc.simulation.auto.parallel <- function() { + sim.dir <- tempfile() + # run MCMC + test.name <- 'running auto Phase II MCMC in parallel' + start.test(test.name) + m <- run.tfr.mcmc(iter='auto', output.dir=sim.dir, parallel=TRUE, cltype='SOCK', + auto.conf=list(iter=10, iter.incr=5, max.loops=3, nr.chains=2, thin=1, burnin=5)) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 40) + test.ok(test.name) + + test.name <- 'continuing auto Phase II MCMC in parallel' + start.test(test.name) + m <- continue.tfr.mcmc(iter='auto', output.dir=sim.dir, auto.conf=list(max.loops=2), parallel=TRUE, cltype='SOCK') + stopifnot(get.total.iterations(m$mcmc.list, 0) == 60) + test.ok(test.name) + + test.name <- 'running auto Phase III MCMC in parallel' + start.test(test.name) + m3 <- run.tfr3.mcmc(sim.dir=sim.dir, iter='auto', thin=1, parallel=TRUE, cltype='SOCK', + auto.conf=list(iter=10, iter.incr=5, max.loops=3, nr.chains=2, thin=1, burnin=5)) + stopifnot(get.total.iterations(m3$mcmc.list, 0) == 40) + test.ok(test.name) + + test.name <- 'continuing auto Phase III MCMC in parallel' + start.test(test.name) + m3 <- continue.tfr3.mcmc(sim.dir=sim.dir, iter='auto', auto.conf=list(max.loops=2), parallel=TRUE, cltype='SOCK' ) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 60) + test.ok(test.name) + + test.name <- 'running auto Phase II MCMC in parallel with ClusterOptions' + start.test(test.name) + #snow::setDefaultClusterOptions(type='SOCK') + m <- run.tfr.mcmc(iter='auto', output.dir=sim.dir, parallel=TRUE, replace.output=TRUE, + auto.conf=list(iter=10, iter.incr=5, max.loops=3, nr.chains=2, thin=1, burnin=5)) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 40) + test.ok(test.name) + + unlink(sim.dir, recursive=TRUE) + } > > test.imputation <- function() { + sim.dir <- tempfile() + + # run MCMC + test.name <- 'running MCMC with missing values' + start.test(test.name) + my.tfr.file <- file.path(find.package('bayesTFR'), 'extdata', 'UN2010_last_obs.txt') + m <- run.tfr.mcmc(iter=5, nr.chains=1, output.dir=sim.dir, my.tfr.file=my.tfr.file, wpp.year=2010, present.year=2010) + stopifnot(m$mcmc.list[[1]]$finished.iter == 5) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 5) + stopifnot(bayesTFR:::tfr.set.identical(m, get.tfr.mcmc(sim.dir), include.output.dir=FALSE)) + # some countries are not DL because of the missing data + # This was the case in UN2008 but not in UN2010 + # stopifnot(length(get.countries.index(m$meta)) != get.nr.countries(m$meta)) + + m3 <- run.tfr3.mcmc(sim.dir=sim.dir, iter=10, nr.chains=1, thin=1, my.tfr.file=my.tfr.file) + stopifnot(m3$mcmc.list[[1]]$finished.iter == 10) + stopifnot(get.total.iterations(m3$mcmc.list, 0) == 10) + stopifnot(bayesTFR:::tfr.set.identical(m3, get.tfr3.mcmc(sim.dir), include.output.dir=FALSE)) + test.ok(test.name) + + test.name <- 'running projections with imputation' + start.test(test.name) + pred <- tfr.predict(m, burnin=0, burnin3=3, verbose=FALSE) + spred <- summary(pred) + stopifnot(spred$nr.traj == 5) + test.ok(test.name) + + test.name <- 'plotting imputed TFR trajectories' + start.test(test.name) + filename <- tempfile() + png(filename=filename) + tfr.trajectories.plot(pred, 'Eritrea', pi=c(90, 54)) + dev.off() + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + test.ok(test.name) + + test.name <- 'creating parameter maps with imputation' + filename <- tempfile() + tfr.map(pred, device='png', par.name='Triangle_c4', device.args=list(filename=filename)) + dev.off() + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + test.ok(test.name) + + unlink(sim.dir, recursive=TRUE) + } > > test.existing.simulation <- function() { + test.name <- 'retrieving Phase II MCMC results' + start.test(test.name) + sim.dir <- file.path(find.package("bayesTFR"), "ex-data", 'bayesTFR.output') + m <- get.tfr.mcmc(sim.dir, low.memory=FALSE, burnin=25, chain.ids=1) + stopifnot(length(m$mcmc.list)==1) + stopifnot(dim(m$mcmc.list[[1]]$traces)[1]==35) + test.ok(test.name) + } > > test.DLcurve <- function() { + test.name <- 'plotting DL curves' + start.test(test.name) + sim.dir <- file.path(find.package("bayesTFR"), "ex-data", 'bayesTFR.output') + m <- get.tfr.mcmc(sim.dir) + filename <- tempfile() + png(filename=filename) + DLcurve.plot(m, 'Burkina Faso') + dev.off() + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + test.ok(test.name) + test.name <- 'obtaining DL curves and DL sigma' + start.test(test.name) + tfr <- seq(1, 8, length=100) + dl <- tfr.country.dlcurves(tfr, m, "Nigeria", burnin=10) + stopifnot(all(dim(dl)==c(50,100))) + dls <- tfr.country.dlcurves(tfr, m, "Nigeria", burnin=0, return.sigma=TRUE) + stopifnot(all(dim(dls$sigma)==c(60,100))) + # world distribution + dlw <- tfr.world.dlcurves(tfr, m, countryUc="Nigeria") + stopifnot(all(dim(dlw)==c(60,100))) + # median of the world DL in the TFR range of 3-4 is smaller than the country-specific median in that range + # visual check: + # DLcurve.plot(m, 'Nigeria') + # lines(tfr, apply(dlw, 2, median)) + stopifnot(all(apply(dlw[, tfr > 3 & tfr < 4], 2, median) < apply(dls$dl[, tfr > 3 & tfr < 4], 2, median))) + test.ok(test.name) + } > > test.TFRtrajectories <- function() { + test.name <- 'plotting TFR trajectories' + start.test(test.name) + sim.dir <- file.path(find.package("bayesTFR"), "ex-data", 'bayesTFR.output') + pred <- get.tfr.prediction(sim.dir=sim.dir) + filename <- tempfile() + png(filename=filename) + tfr.trajectories.plot(pred, 'Australia') + dev.off() + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + test.ok(test.name) + + test.name <- 'tabulating TFR trajectories' + start.test(test.name) + t <- tfr.trajectories.table(pred, 'Australia', pi=c(90, 80, 70)) + stopifnot(all(dim(t) == c(30, 9))) + test.ok(test.name) + } > > test.plot.all <- function() { + test.name <- 'plotting TFR trajectories and DL curves for all countries' + start.test(test.name) + sim.dir <- file.path(find.package("bayesTFR"), "ex-data", 'bayesTFR.output') + pred <- get.tfr.prediction(sim.dir=sim.dir) + mc <- get.tfr.mcmc(sim.dir) + dir <- tempfile() + tfr.trajectories.plot.all(pred, output.dir=dir, main='XXX trajs') + trajf <- length(list.files(dir, pattern='png$', full.names=FALSE)) + DLcurve.plot.all(mc, output.dir=dir, main='DL XXX', output.type='jpeg') + dlf <- length(list.files(dir, pattern='jpeg$', full.names=FALSE)) + unlink(dir, recursive=TRUE) + stopifnot(trajf == get.nr.countries(mc$meta)) + stopifnot(dlf == length(mc$meta$id_DL)) + test.ok(test.name) + } > > > test.plot.density <- function() { + test.name <- 'plotting parameter density' + start.test(test.name) + sim.dir <- file.path(find.package("bayesTFR"), "ex-data", 'bayesTFR.output') + pred <- get.tfr.prediction(sim.dir=sim.dir) + filename <- tempfile() + png(filename=filename) + tfr.pardensity.cs.plot('Ireland', pred) + dev.off() + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + test.ok(test.name) + } > > test.plot.map <- function() { + test.name <- 'creating TFR maps via rworldmap' + start.test(test.name) + sim.dir <- file.path(find.package("bayesTFR"), "ex-data", 'bayesTFR.output') + pred <- get.tfr.prediction(sim.dir=sim.dir) + filename <- tempfile() + tfr.map(pred, year=2043, device='png', device.args=list(filename=filename)) + dev.off() + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + test.ok(test.name) + + test.name <- 'creating parameter maps' + filename <- tempfile() + tfr.map(pred, year=1985, device='png', par.name='gamma_2', device.args=list(filename=filename)) + dev.off() + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + test.ok(test.name) + + test.name <- 'creating lambda maps' + filename <- tempfile() + tfr.map(pred, device='png', par.name='lambda', quantile=0.7, + device.args=list(filename=filename), numCats=20, catMethod="pretty") + dev.off() + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + test.ok(test.name) + + test.name <- 'creating TFR maps using ggplot2' + filename <- paste0(tempfile(), ".png") + tfr.ggmap(pred, file.name = filename) + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + tfr.ggmap(pred, same.scale = TRUE, file.name = filename) + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + tfr.ggmap(pred, same.scale = TRUE, year = 2100, file.name = filename) + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + test.ok(test.name) + } > > test.get.parameter.traces <- function() { + test.name <- 'getting parameter traces' + start.test(test.name) + sim.dir <- file.path(find.package("bayesTFR"), "ex-data", 'bayesTFR.output') + m <- get.tfr.mcmc(sim.dir, low.memory=TRUE) + traces <- get.tfr.parameter.traces(m$mcmc.list, burnin=15, + thinning.index=c(4, 25, 29)) + stopifnot(nrow(traces)==3) + m.check <- get.tfr.mcmc(sim.dir, low.memory=FALSE, burnin=15) + stopifnot(traces[1,'chi']==m.check$mcmc.list[[1]]$traces[4,'chi']) + #stopifnot(all(traces[c(2,3),'chi']==m.check$mcmc.list[[2]]$traces[c(10,14),'chi'])) # in case of two chains + stopifnot(all(traces[c(2,3),'chi']==m.check$mcmc.list[[1]]$traces[c(25,29),'chi'])) + + m.check <- get.tfr.mcmc(sim.dir, low.memory=FALSE, burnin=30) + traces <- get.tfr.parameter.traces(m$mcmc.list, burnin=30, thin=8) + stopifnot(nrow(traces)==4) + stopifnot(traces[2,'psi']==m.check$mcmc.list[[1]]$traces[9,'psi']) + #stopifnot(traces[4,'psi']==m.check$mcmc.list[[2]]$traces[10,'psi']) + stopifnot(traces[4,'psi']==m.check$mcmc.list[[1]]$traces[25,'psi']) + test.ok(test.name) + } > > test.median.adjust <- function() { + test.name <- 'adjusting median' + start.test(test.name) + sim.dir <- file.path(find.package("bayesTFR"), "ex-data", 'bayesTFR.output') + m <- get.tfr.mcmc(sim.dir) + pred.dir <- tempfile() + pred <- tfr.predict(m, burnin=0, output.dir=pred.dir, nr.traj=10, save.as.ascii=0, verbose=FALSE, use.tfr3=FALSE) + country.obj1 <- get.country.object('Kenya', m$meta) + country.obj2 <- get.country.object('Mongolia', m$meta) + new.pred <- tfr.median.adjust(pred.dir, countries=c('Kenya', 'Mongolia')) + orig.median1 <- get.median.from.prediction(new.pred, country.obj1$index, country.obj1$code, adjusted=FALSE) + new.median1 <- get.median.from.prediction(new.pred, country.obj1$index, country.obj1$code, adjusted=TRUE) + orig.median2 <- get.median.from.prediction(new.pred, country.obj2$index, country.obj2$code, adjusted=FALSE) + new.median2 <- get.median.from.prediction(new.pred, country.obj2$index, country.obj2$code, adjusted=TRUE) + stopifnot(sum(orig.median1==new.median1)==1) # only the present year should be equal + stopifnot(sum(orig.median2==new.median2)==1) + test.ok(test.name) + + test.name <- 'plotting adjusted TFR trajectories' + start.test(test.name) + filename <- tempfile() + png(filename=filename) + tfr.trajectories.plot(new.pred, 'Kenya', adjusted.only=FALSE) + dev.off() + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + test.ok(test.name) + + test.name <- 'writing summary files' + start.test(test.name) + write.projection.summary(sim.dir, adjusted=FALSE, output.dir=pred.dir) + write.projection.summary(sim.dir, adjusted=TRUE, output.dir=pred.dir) + test.ok(test.name) + unlink(pred.dir) + } > > test.estimate.mcmc.with.suppl.data <- function() { + sim.dir <- tempfile() + # run MCMC + test.name <- 'estimating MCMC using supplemental data' + start.test(test.name) + m <- run.tfr.mcmc(nr.chains=1, iter=30, thin=1, output.dir=sim.dir, start.year=1750, seed=1) + stopifnot(length(m$meta$suppl.data$regions$country_code) == 103) + stopifnot(all(dim(m$meta$suppl.data$tfr_matrix) == c(40, 103))) + test.ok(test.name) + + # continue MCMC + test.name <- 'continuing MCMC with supplemental data' + start.test(test.name) + m <- continue.tfr.mcmc(iter=10, output.dir=sim.dir) + stopifnot(m$mcmc.list[[1]]$finished.iter == 40) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 40) + stopifnot(!is.element(900, m$meta$regions$country_code)) # 'World' should not be included + test.ok(test.name) + + # run MCMC for an aggregation + test.name <- 'estimating MCMC for extra areas with supplemental data' + start.test(test.name) + data.dir <- file.path(find.package("bayesTFR"), 'extdata') + m <- run.tfr.mcmc.extra(sim.dir=sim.dir, + my.tfr.file=file.path(data.dir, 'my_tfr_template.txt'), burnin=0, verbose=TRUE) + stopifnot(is.element(900, m$meta$regions$country_code)) # 'World' should be included + stopifnot(is.element(900, m$meta$suppl.data$regions$country_code)) + test.ok(test.name) + + # run prediction + test.name <- 'running projections for simulation with supplemental data' + start.test(test.name) + pred <- tfr.predict(m, burnin=10, verbose=FALSE, save.as.ascii=0, rho=NULL, sigmaAR1=NULL, use.tfr3=FALSE) + spred <- summary(pred) + stopifnot(spred$nr.traj == 30) + stopifnot(!is.element(903, pred$mcmc.set$regions$country_code)) + npred <- dim(pred$tfr_matrix_reconstructed)[2] + test.ok(test.name) + unlink(sim.dir, recursive=TRUE) + } > > test.subnational.predictions <- function() { + sim.dir <- tempfile() + test.name <- 'predicting subnational TFR' + start.test(test.name) + + my.subtfr.file <- file.path(find.package("bayesTFR"), 'extdata', 'subnational_tfr_template.txt') + nat.dir <- file.path(find.package("bayesTFR"), "ex-data", "bayesTFR.output") + + # Subnational projections for Australia and Canada; start 1 time period before national projections + preds <- tfr.predict.subnat(c(36, 124), my.tfr.file=my.subtfr.file, + sim.dir=nat.dir, output.dir=sim.dir, start.year=2011) + stopifnot(all(names(preds) %in% c("36", "124"))) + stopifnot(nrow(get.countries.table(preds[["36"]]))==8) + filename <- tempfile() + pdf(file=filename) + tfr.trajectories.plot(preds[["36"]], "Queensland") + tfr.trajectories.plot(preds[["124"]], "Quebec") + dev.off() + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + unlink(sim.dir, recursive=TRUE) + + # Subnational projections for Canada; start year after the start of national projections + sim.dir <- tempfile() + preds <- tfr.predict.subnat("Canada", my.tfr.file=my.subtfr.file, + sim.dir=nat.dir, output.dir=sim.dir, start.year=2018) + stopifnot(all(names(preds) %in% c("124"))) + spred <- summary(preds[["124"]], "Quebec") + stopifnot(min(spred$projection.years) == 2018) + unlink(sim.dir, recursive=TRUE) + + # Subnational projections for Canada with one region (Alberta) having imputed values + sim.dir <- tempfile() + mytfr <- read.delim(my.subtfr.file, check.names = FALSE) + mytfr[mytfr$country_code == 124 & mytfr$reg_code == 658, "last.observed"] <- 1999 + my.subtfr.file.mis <- tempfile() + write.table(mytfr, file = my.subtfr.file.mis, row.names = FALSE, quote = FALSE, sep = "\t") + preds <- tfr.predict.subnat("Canada", my.tfr.file=my.subtfr.file.mis, + sim.dir=nat.dir, output.dir=sim.dir, start.year=2013) + obs <- preds[["124"]]$mcmc.set$meta$tfr_matrix_observed[,"658"] + recon <- preds[["124"]]$tfr_matrix_reconstructed[,"658"] + stopifnot(all(is.na(obs[c("2003", "2008")]))) # observed is NA + stopifnot(all(!is.na(obs["1998"]))) # last observed non-NA + stopifnot(all(!is.na(recon[c("2003", "2008")]))) # missing values were reconstructed + unlink(sim.dir, recursive=TRUE) + unlink(my.subtfr.file.mis) + + # Subnational projections for all countries in the file + sim.dir <- tempfile() + preds <- tfr.predict.subnat(c(36, 218, 124), my.tfr.file=my.subtfr.file, sim.dir=nat.dir, + output.dir=sim.dir, end.year=2050) + stopifnot(length(preds) == 3) + + # Retrieve results for all countries + preds <- get.regtfr.prediction(sim.dir) + stopifnot(length(preds) == 3) + t <- tfr.trajectories.table(preds[["218"]], "Bolivar") + stopifnot(all(dim(t) == c(17, 7))) + + # Retrieve results for one country + pred <- get.regtfr.prediction(sim.dir, 218) + spred <- summary(pred, "Loja") + stopifnot(max(spred$projection.years) == 2048) + + # Retrieve trajectories + trajs <- get.tfr.trajectories(preds[["124"]], "Alberta") + stopifnot(all(dim(trajs) == c(7, 30))) + + unlink(sim.dir, recursive=TRUE) + + # Annual subnational projections + my.subtfr.file.annual <- tempfile() + dat <- data.table::fread(my.subtfr.file) # load the data and save only the last time period, pretending this is a single year data point + dat <- dat[, .(country_code, country, reg_code, name, `2008` = `2005-2010`)] + data.table::fwrite(dat, file = my.subtfr.file.annual, sep = "\t") # save it + + sim.dir <- tempfile() + preds <- tfr.predict.subnat(c(36, 218, 124), my.tfr.file=my.subtfr.file.annual, sim.dir=nat.dir, + output.dir=sim.dir, start.year = 2009, end.year=2030, annual = TRUE) + + # Retrieve trajectories + trajs <- get.tfr.trajectories(preds[["124"]], "Alberta") + stopifnot(all(dim(trajs) == c(23, 30))) # from 2008 to 2030 + stopifnot(all(c(2021, 2029) %in% as.integer(rownames(trajs)))) + + pred <- get.regtfr.prediction(sim.dir, 218) + spred <- summary(pred, "Manabi") + stopifnot(max(spred$projection.years) == 2030) + + t <- tfr.trajectories.table(preds[["124"]], "Ontario") + stopifnot(max(as.integer(rownames(t))) == 2030) + stopifnot(all(c(2009, 2014, 2029) %in% as.integer(rownames(t)))) + + unlink(sim.dir, recursive=TRUE) + unlink(my.subtfr.file.annual) + + test.ok(test.name) + + } > > test.reproduce.simulation <- function() { + sim.dir <- tempfile() + test.name <- 'reproducing simulation' + start.test(test.name) + seed <- 1234 + m1 <- run.tfr.mcmc(iter=5, nr.chains=2, output.dir=sim.dir, start.year=1950, seed = seed) + res1 <- summary(m1)$phase2$results$statistics + m2 <- run.tfr.mcmc(iter=5, nr.chains=2, output.dir=sim.dir, start.year=1950, seed = seed, replace.output = TRUE) + res2 <- summary(m2)$phase2$results$statistics + stopifnot(!is.null(res1) && all(res1 == res2)) + + m3 <- run.tfr.mcmc(iter=5, nr.chains=2, output.dir=sim.dir, start.year=1950, replace.output = TRUE) # no seed + res3 <- summary(m3)$phase2$results$statistics + stopifnot(!all(res3 == res2)) + + # parallel + m1p <- run.tfr.mcmc(iter=5, nr.chains=2, output.dir=sim.dir, start.year=1950, seed = seed, replace.output = TRUE, parallel = TRUE, ft_verbose = TRUE) + res1p <- summary(m1p)$phase2$results$statistics + m2p <- run.tfr.mcmc(iter=5, nr.chains=2, output.dir=sim.dir, start.year=1950, seed = seed, replace.output = TRUE, parallel = TRUE, ft_verbose = TRUE) + res2p <- summary(m2p)$phase2$results$statistics + stopifnot(!is.null(res1p) && all(res1p == res2p)) + + m3p <- run.tfr.mcmc(iter=5, nr.chains=2, output.dir=sim.dir, start.year=1950, replace.output = TRUE, parallel = TRUE, ft_verbose = TRUE) # no seed + res3p <- summary(m3p)$phase2$results$statistics + stopifnot(!all(res3p == res2p)) + + # with uncertainty + mu1 <- run.tfr.mcmc(iter=5, nr.chains=2, output.dir=sim.dir, start.year=1950, seed = seed, uncertainty = TRUE, replace.output = TRUE) + resu1 <- summary(mu1)$phase2$results$statistics + mu2 <- run.tfr.mcmc(iter=5, nr.chains=2, output.dir=sim.dir, start.year=1950, seed = seed, uncertainty = TRUE, replace.output = TRUE) + resu2 <- summary(mu2)$phase2$results$statistics + mu3 <- run.tfr.mcmc(iter=5, nr.chains=2, output.dir=sim.dir, start.year=1950, uncertainty = TRUE, replace.output = TRUE) + stopifnot(!is.null(resu1) && all(resu1 == resu2)) # includes both phase 2 and 3 parameters + stopifnot(!all(resu1 == summary(mu3)$phase2$results$statistics)) + + test.ok(test.name) + unlink(sim.dir, recursive=TRUE) + } > > test.run.mcmc.simulation.with.uncertainty <- function(wpp.year = 2019) { + sim.dir <- tempfile() + + # run MCMC + test.name <- 'running MCMC with uncertainty' + start.test(test.name, wpp.year) + m <- run.tfr.mcmc(iter=5, nr.chains=1, output.dir=sim.dir, uncertainty = TRUE, wpp.year = wpp.year) + stopifnot(m$mcmc.list[[1]]$finished.iter == 5) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 5) + stopifnot(bayesTFR:::tfr.set.identical(m, get.tfr.mcmc(sim.dir), include.output.dir=FALSE)) + + # continue MCMC + test.name <- 'continuing MCMC with uncertainty' + start.test(test.name, wpp.year) + m <- continue.tfr.mcmc(iter=5, output.dir=sim.dir) + stopifnot(m$mcmc.list[[1]]$finished.iter == 10) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 10) + stopifnot(m$mcmc.list[[1]]$uncertainty) + test.ok(test.name) + + # summary of MCMC + test.name <- 'summary of MCMC with uncertainty' + start.test(test.name, wpp.year) + sm <- summary(m, country = "Niger") + sm2 <- summary(m, country = "Japan") + smg <- summary(m) + stopifnot(!sm$phase3$estimation) + stopifnot(sm2$phase3$estimation) + stopifnot(!is.null(smg$phase3)) + test.ok(test.name) + + # run MCMC for an extra country + test.name <- 'running MCMC with uncertainty for extra country' + start.test(test.name, wpp.year) + countries <- c(124, 840) + m <- run.tfr.mcmc.extra(sim.dir=sim.dir, countries = countries, iso.unbiased = countries, burnin=0, uncertainty = TRUE) + stopifnot(sum(m$meta$regions$country_code %in% countries) == length(countries)) # countries were replaced and not added + test.ok(test.name) + + test.name <- 'checking Phase III with uncertainty' + start.test(test.name, wpp.year) + m3 <- get.tfr3.mcmc(sim.dir=sim.dir) + stopifnot(m3$mcmc.list[[1]]$finished.iter == 10) + stopifnot(get.total.iterations(m3$mcmc.list, 0) == 10) + test.ok(test.name) + + # run prediction + test.name <- 'running projections with uncertainty' + start.test(test.name, wpp.year) + pred <- tfr.predict(m, burnin=0, burnin3=0, uncertainty = TRUE) + spred <- summary(pred) + stopifnot(spred$nr.traj == 10) + test.ok(test.name) + + + npred <- dim(pred$tfr_matrix_reconstructed)[2] + + # run MCMC and prediction for extra country + test.name <- 'running projections with uncertainty for extra country' + start.test(test.name, wpp.year) + m <- run.tfr.mcmc.extra(sim.dir=sim.dir, countries=840, burnin=0, uncertainty = TRUE) + # run prediction only for 840 + pred <- tfr.predict.extra(sim.dir=sim.dir, countries = 840, verbose=FALSE, uncertainty = TRUE) + stopifnot(dim(pred$tfr_matrix_reconstructed)[2] == npred) + stopifnot(!is.null(bayesTFR:::get.trajectories(pred, 840)$trajectories)) + stopifnot(pred$use.tfr3) + test.ok(test.name) + + test.name <- 'getting bias and sd models' + start.test(test.name, wpp.year) + bias_sd <- tfr.bias.sd(m, "Nigeria") + stopifnot(!is.null(bias_sd)) + test.ok(test.name) + + test.name <- 'plotting uncertainty' + start.test(test.name, wpp.year) + filename <- tempfile() + png(filename=filename) + g <- tfr.estimation.plot(pred, "US", save.image = FALSE) + print(g) + dev.off() + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + test.ok(test.name) + + test.name <- 'write projection summary' + start.test(test.name, wpp.year) + write.projection.summary(sim.dir, est.uncertainty = FALSE) + write.projection.summary(sim.dir, est.uncertainty = TRUE) + # TODO: add a check of something + test.ok(test.name) + unlink(sim.dir, recursive=TRUE) + } > > test.run.annual.simulation <- function(wpp.year = 2019) { + sim.dir <- tempfile() + + test.name <- 'running MCMC with annual data' + start.test(test.name, wpp.year) + m <- run.tfr.mcmc(iter = 5, nr.chains = 1, output.dir = sim.dir, annual = TRUE, ar.phase2 = TRUE, + present.year = 2018, wpp.year = wpp.year) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 5) + stopifnot(all(1953:2018 %in% rownames(m$meta$tfr_matrix))) + stopifnot(bayesTFR:::tfr.set.identical(m, get.tfr.mcmc(sim.dir), include.output.dir=FALSE)) + stopifnot("rho_phase2" %in% tfr.parameter.names(meta = m$meta)) + test.ok(test.name) + + test.name <- 'running annual MCMC for extra country' + start.test(test.name, wpp.year) + countries <- c(900, 908) + m <- run.tfr.mcmc.extra(sim.dir = sim.dir, countries = countries, burnin = 0) + stopifnot(countries %in% m$meta$regions$country_code) + test.ok(test.name) + + test.name <- 'running Phase III MCMC with annual data' + start.test(test.name, wpp.year) + m3 <- run.tfr3.mcmc(sim.dir=sim.dir, iter=20, thin=1, nr.chains=2) + stopifnot(get.total.iterations(m3$mcmc.list, 0) == 40) + stopifnot(bayesTFR:::tfr.set.identical(m3, get.tfr3.mcmc(sim.dir), include.output.dir=FALSE)) + test.ok(test.name) + + test.name <- 'running annual projections' + start.test(test.name, wpp.year) + pred <- tfr.predict(m, burnin=0, burnin3=0) + spred <- summary(pred) + stopifnot(spred$nr.traj == 5) + stopifnot(all(2019:2100 %in% spred$projection.years)) + stopifnot(all(c(908, 900) %in% get.countries.table(pred)$code)) + test.ok(test.name) + + unlink(sim.dir, recursive=TRUE) + } > > proc.time() user system elapsed 0.42 0.10 0.54