start.test <- function(name, wpp.year = NULL) cat('\n<=== Starting test of', name, if(!is.null(wpp.year)) paste0('(WPP ', wpp.year, ')') else '', '====\n') test.ok <- function(name) cat('\n==== Test of', name, 'OK.===>\n') test.load.UNtfr <- function(wpp.year=2008) { # read the UN TFR input file test.name <- 'loading UN TFR file' start.test(test.name, wpp.year) tfr <- bayesTFR:::read.UNtfr(wpp.year) stopifnot(length(dim(tfr$data.object$data))==2) stopifnot(dim(tfr$data.object$data)[1] > 150) stopifnot(is.element('last.observed', colnames(tfr$data.object$data))) stopifnot(length(tfr$data.object$replaced) == 0) stopifnot(length(tfr$data.object$added) == 0) test.ok(test.name) } test.load.UNtfr.and.my.tfr.file <- function() { # read the UN TFR input file for WPP 2019 test.name <- 'loading UN TFR file and my_tfr_file' start.test(test.name) my.tfr.file <- file.path(find.package("bayesTFR"), 'extdata', 'my_tfr_template.txt') tfr <- bayesTFR:::read.UNtfr(2019, my.tfr.file=my.tfr.file) stopifnot(length(dim(tfr$data.object$data))==2) stopifnot(length(dim(tfr$suppl.data.object$data))==2) stopifnot(dim(tfr$data.object$data)[1] == 249) stopifnot(dim(tfr$suppl.data.object$data)[1] == 104) stopifnot(is.element('last.observed', colnames(tfr$data.object$data))) stopifnot(length(tfr$data.object$replaced) == 1) stopifnot(length(tfr$data.object$added) == 0) stopifnot(length(tfr$suppl.data.object$replaced) == 0) stopifnot(length(tfr$suppl.data.object$added) == 1) test.ok(test.name) } test.load.UNlocations <- function(wpp.year=2012) { test.name <- 'loading WPP location file' start.test(test.name, wpp.year) tfr <- suppressWarnings(bayesTFR:::read.UNtfr(wpp.year)) # if wpp.year=2008, there are warnings about non-existent tfr_supplemental dataset locs <- bayesTFR:::read.UNlocations(tfr$data.object$data, wpp.year) # this could give warnings if there are duplicates in UNlocations stopifnot(length(dim(locs$loc_data)) == 2) stopifnot(all(is.element(c('country_code', 'include_code'), colnames(locs$loc_data)))) stopifnot(dim(locs$loc_data)[1] > 200) stopifnot(all(is.element(intersect(c(0,1,2), locs$loc_data[,'include_code']), c(0,1,2)))) test.ok(test.name) test.name <- 'loading WPP location file with my.locations.file' start.test(test.name, wpp.year) new.locations <- data.frame(country_code=9999, name='my location', reg_code=9999, area_code=8888, reg_name='my region', area_name='my area', location_type=4) f <- tempfile() write.table(new.locations, file=f, sep='\t', row.names=FALSE) mylocs <- bayesTFR:::read.UNlocations(tfr$data.object$data, wpp.year, my.locations.file=f) # stopifnot(dim(mylocs$loc_data)[1] == dim(locs$loc_data)[1]+1) # has one country more # stopifnot(is.element(9999, mylocs$loc_data$country_code)) e <- new.env() do.call("data", list("UNlocations", package=paste0("wpp", wpp.year), envir=e)) # this for some reason causes a warning "‘match’ requires vector arguments" #data("UNlocations", package=paste0("wpp", wpp.year), envir=e) my.locations <- e$UNlocations[1:100,] my.locations[which(my.locations$location_type == 4)[1],'area_code'] <- 123456 write.table(my.locations, file=f, sep='\t', row.names=FALSE) mylocs <- bayesTFR:::read.UNlocations(tfr$data.object$data, wpp.year, my.locations.file=f) stopifnot(is.element(123456, mylocs$loc_data$area_code)) test.ok(test.name) unlink(f) } test.create.tfr.matrix <- function(wpp.year=2008) { test.name <- 'creating TFR matrix' start.test(test.name, wpp.year) tfr <- bayesTFR:::read.UNtfr(wpp.year) locs <- bayesTFR:::read.UNlocations(tfr$data.object$data, wpp.year) tfr.and.regions <- bayesTFR:::get.TFRmatrix.and.regions(tfr$data.object$data, locs$loc_data, present.year=2009) tfr.matrix <- tfr.and.regions$tfr_matrix stopifnot(dim(tfr.matrix)[1] == 12) stopifnot(rownames(tfr.matrix)[12] == '2008') test.ok(test.name) } test.run.mcmc.simulation <- function(compression='None', wpp.year = 2019) { sim.dir <- tempfile() # run MCMC test.name <- 'running Phase II MCMC' start.test(test.name, wpp.year) m <- run.tfr.mcmc(iter=5, nr.chains=1, output.dir=sim.dir, start.year=1950, compression.type=compression, wpp.year = wpp.year) stopifnot(m$mcmc.list[[1]]$finished.iter == 5) stopifnot(get.total.iterations(m$mcmc.list, 0) == 5) stopifnot(bayesTFR:::tfr.set.identical(m, get.tfr.mcmc(sim.dir), include.output.dir=FALSE)) test.ok(test.name) # continue MCMC test.name <- 'continuing Phase II MCMC' start.test(test.name, wpp.year) m <- continue.tfr.mcmc(iter=5, output.dir=sim.dir) stopifnot(m$mcmc.list[[1]]$finished.iter == 10) stopifnot(get.total.iterations(m$mcmc.list, 0) == 10) stopifnot(!is.element(900, m$meta$regions$country_code)) # 'World' should not be included test.ok(test.name) # run MCMC for an aggregation test.name <- 'running Phase II MCMC for extra areas' start.test(test.name, wpp.year) data.dir <- file.path(find.package("bayesTFR"), 'extdata') m <- run.tfr.mcmc.extra(sim.dir=sim.dir, my.tfr.file=file.path(data.dir, 'my_tfr_template.txt'), burnin=0) stopifnot(is.element(900, m$meta$regions$country_code)) # 'World' should be included test.ok(test.name) test.name <- 'running Phase III MCMC' start.test(test.name, wpp.year) m3 <- run.tfr3.mcmc(sim.dir=sim.dir, iter=20, thin=1, nr.chains=2, compression.type=compression) stopifnot(m3$mcmc.list[[1]]$finished.iter == 20) stopifnot(get.total.iterations(m3$mcmc.list, 0) == 40) stopifnot(bayesTFR:::tfr.set.identical(m3, get.tfr3.mcmc(sim.dir), include.output.dir=FALSE)) test.ok(test.name) # continue MCMC test.name <- 'continuing Phase III MCMC' start.test(test.name, wpp.year) m3 <- continue.tfr3.mcmc(sim.dir=sim.dir, iter=5) stopifnot(m3$mcmc.list[[1]]$finished.iter == 25) stopifnot(get.total.iterations(m3$mcmc.list, 0) == 50) test.ok(test.name) # run prediction test.name <- 'running projections with classic AR(1)' start.test(test.name, wpp.year) pred <- tfr.predict(m, burnin=0, use.tfr3=FALSE, rho=NULL, sigmaAR1=NULL, verbose=FALSE) spred <- summary(pred) stopifnot(spred$nr.traj == 10) stopifnot(is.na(pred$thin3)) stopifnot(!is.element(903, pred$mcmc.set$regions$country_code)) test.ok(test.name) rho <- pred$rho sigma <- pred$sigmaAR1 mu <- pred$mu test.name <- 'running projections with BHM for phase III' start.test(test.name, wpp.year) pred <- tfr.predict(m, burnin=0, use.tfr3=TRUE, burnin3=5, verbose=FALSE, replace.output=TRUE) spred <- summary(pred) stopifnot(spred$nr.traj == 10) stopifnot(pred$thin3 == 4) stopifnot(!is.element(903, pred$mcmc.set$regions$country_code)) test.ok(test.name) npred <- dim(pred$tfr_matrix_reconstructed)[2] # run MCMC for another aggregation test.name <- 'running projections on extra areas' start.test(test.name, wpp.year) m <- run.tfr.mcmc.extra(sim.dir=sim.dir, countries=903, burnin=0) # run prediction only for the area 903 pred <- tfr.predict.extra(sim.dir=sim.dir, verbose=FALSE) stopifnot(is.element(903, pred$mcmc.set$meta$regions$country_code)) stopifnot(dim(pred$tfr_matrix_reconstructed)[2] == npred+1) stopifnot(!is.null(bayesTFR:::get.trajectories(pred, 903)$trajectories)) stopifnot(pred$use.tfr3) test.ok(test.name) test.name <- 'estimating AR(1) parameters' start.test(test.name, wpp.year) ar1pars <- get.ar1.parameters(mu, m$meta) stopifnot(rho==ar1pars$rho) stopifnot(sigma==ar1pars$sigmaAR1) test.ok(test.name) test.name <- 'shifting the median' start.test(test.name, wpp.year) projs <- summary(pred, country='Uganda')$projections tfr.median.shift(sim.dir, country='Uganda', shift=1.5, from=2051, to=2080) shifted.pred <- get.tfr.prediction(sim.dir) shifted.projs <- summary(shifted.pred, country='Uganda')$projections stopifnot(all(projs[8:13,c(1,3:dim(projs)[2])]+1.5 == shifted.projs[8:13,c(1,3:dim(projs)[2])])) stopifnot(all(projs[c(1:7, 14:17),c(1,3:dim(projs)[2])] == shifted.projs[c(1:7, 14:17),c(1,3:dim(projs)[2])])) test.ok(test.name) test.name <- 'resetting the median' start.test(test.name, wpp.year) shifted.pred <- tfr.median.shift(sim.dir, country='Uganda', reset = TRUE) shifted.projs <- summary(shifted.pred, country='Uganda')$projections stopifnot(all(projs[,c(1,3:dim(projs)[2])] == shifted.projs[,c(1,3:dim(projs)[2])])) test.ok(test.name) test.name <- 'setting the median' start.test(test.name, wpp.year) expert.values <- c(2.3, 2.4, 2.4) cobj <- get.country.object('Uganda', m$meta) shift <- expert.values - pred$quantiles[cobj$index, '0.5',2:4] mod.pred <- tfr.median.set(sim.dir, country='Uganda', values=expert.values, years=2024) mod.projs <- summary(mod.pred, country='Uganda')$projections stopifnot(all(mod.projs[2:4, c(1,3:dim(projs)[2])]==projs[2:4, c(1,3:dim(projs)[2])]+shift)) stopifnot(all(mod.projs[c(1,5:17), c(1,3:dim(projs)[2])]==projs[c(1,5:17), c(1,3:dim(projs)[2])])) test.ok(test.name) test.name <- 'shifting medians to WPP' tfr.shift.prediction.to.wpp(sim.dir) shifted.pred <- get.tfr.prediction(sim.dir) shifted.projs <- summary(shifted.pred, country='Niger')$projections shifted.projs <- data.table::data.table(shifted.projs)[, year := as.integer(rownames(shifted.projs))] e <- new.env() data("tfrprojMed", package = paste0("wpp", wpp.year), envir = e) wpptfr <- data.table::data.table(e$tfrprojMed) wpptfrl <- data.table::melt(wpptfr, id.vars = c("country_code", "name"), variable.name = "period") wpptfrl <- wpptfrl[, year := as.integer(substr(period, 1,4)) + 3][name == "Niger"] dat <- merge(wpptfrl, shifted.projs[, c("year", "50%"), with = FALSE], by = "year") stopifnot(all.equal(dat$value, dat[, `50%`])) stopifnot(!is.null(shifted.pred$median.shift)) stopifnot(length(shifted.pred$median.shift) == nrow(get.countries.table(shifted.pred))) test.ok(test.name) test.name <- 'resetting all countries' tfr.median.reset(sim.dir) new.pred <- get.tfr.prediction(sim.dir) stopifnot(is.null(new.pred$median.shift)) test.ok(test.name) unlink(sim.dir, recursive=TRUE) } test.thinned.simulation <- function(compression='None', wpp.year = 2019) { sim.dir <- tempfile() # run MCMC test.name <- 'running thinned Phase II MCMC' start.test(test.name, wpp.year) m <- run.tfr.mcmc(iter=10, nr.chains=2, output.dir=sim.dir, thin=2, compression.type=compression, wpp.year = wpp.year) stopifnot(m$mcmc.list[[1]]$finished.iter == 10) stopifnot(m$mcmc.list[[1]]$length == 6) stopifnot(get.total.iterations(m$mcmc.list, 0) == 20) stopifnot(get.stored.mcmc.length(m$mcmc.list, burnin=4) == 6) test.ok(test.name) # continue MCMC test.name <- 'continuing thinned Phase II MCMC' start.test(test.name, wpp.year) m <- continue.tfr.mcmc(iter=10, output.dir=sim.dir) stopifnot(m$mcmc.list[[1]]$finished.iter == 20) stopifnot(m$mcmc.list[[1]]$length == 11) stopifnot(get.total.iterations(m$mcmc.list, 0) == 40) stopifnot(get.stored.mcmc.length(m$mcmc.list, burnin=4) == 16) test.ok(test.name) # run MCMC for an aggregation test.name <- 'running thinned MCMC for extra areas' start.test(test.name, wpp.year) data.dir <- file.path(find.package("bayesTFR"), 'extdata') m <- run.tfr.mcmc.extra(sim.dir=sim.dir, my.tfr.file=file.path(data.dir, 'my_tfr_template.txt'), burnin=0) stopifnot(is.element(900, m$meta$regions$country_code)) # 'World' should be included test.ok(test.name) test.name <- 'running thinned Phase III MCMC' start.test(test.name, wpp.year) m3 <- run.tfr3.mcmc(sim.dir=sim.dir, iter=20, nr.chains=3, thin=4, compression.type=compression) stopifnot(m3$mcmc.list[[1]]$finished.iter == 20) stopifnot(m3$mcmc.list[[1]]$length == 6) stopifnot(get.total.iterations(m3$mcmc.list, 0) == 60) stopifnot(get.stored.mcmc.length(m3$mcmc.list, burnin=4) == 12) test.ok(test.name) # continue MCMC test.name <- 'continuing thinned Phase III MCMC' start.test(test.name, wpp.year) m3 <- continue.tfr3.mcmc(sim.dir=sim.dir, iter=5) stopifnot(m3$mcmc.list[[1]]$finished.iter == 25) stopifnot(m3$mcmc.list[[1]]$length == 7) stopifnot(get.total.iterations(m3$mcmc.list, 0) == 75) stopifnot(get.stored.mcmc.length(m3$mcmc.list, burnin=4) == 15) test.ok(test.name) # run prediction test.name <- 'running thinned projections' start.test(test.name, wpp.year) pred <- tfr.predict(m, burnin=5, burnin3=3, verbose=FALSE) spred <- summary(pred) stopifnot(spred$nr.traj == 16) # 2x8 stopifnot(pred$thin3 == 4) stopifnot(pred$mcmc.set$mcmc.list[[1]]$finished.iter == 16) stopifnot(length(pred$mcmc.set$mcmc.list) == 1) npred <- dim(pred$tfr_matrix_reconstructed)[2] test.ok(test.name) test.name <- 'running thinned projections on extra areas' start.test(test.name, wpp.year) m <- run.tfr.mcmc.extra(sim.dir=sim.dir, countries=903, burnin=5) # run prediction only for the area 903 pred <- tfr.predict.extra(sim.dir=sim.dir, verbose=FALSE) stopifnot(dim(pred$tfr_matrix_reconstructed)[2] == npred+1) test.ok(test.name) test.name <- 'plotting DL curves with thinned MCMC' start.test(test.name, wpp.year) filename <- tempfile() png(filename=filename) DLcurve.plot(m, 903, burnin=5, nr.curves=5) dev.off() size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) test.ok(test.name) test.name <- 'plotting TFR trajectories with thinned MCMC' start.test(test.name, wpp.year) filename <- tempfile() png(filename=filename) tfr.trajectories.plot(pred, 900, nr.traj=5, pi=c(70,65)) dev.off() size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) test.ok(test.name) test.name <- 'getting Phase II parameter traces with thinned MCMC' start.test(test.name, wpp.year) traces <- get.tfr.parameter.traces(m$mcmc.list, burnin=5, thinning.index=c(1, 3, 10, 15)) stopifnot(nrow(traces)==4) test.ok(test.name) test.name <- 'getting Phase III parameter traces with thinned MCMC' start.test(test.name, wpp.year) m3 <- get.tfr3.mcmc(sim.dir) traces <- get.tfr3.parameter.traces(m3$mcmc.list, burnin=10, thinning.index=c(1, 3, 5, 10)) stopifnot(nrow(traces)==4) test.ok(test.name) test.name <- 'plotting Phase II parameter density' start.test(test.name, wpp.year) filename <- tempfile() png(filename=filename) tfr.pardensity.plot(m, burnin=10) dev.off() size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) test.ok(test.name) test.name <- 'plotting Phase III parameter density' start.test(test.name, wpp.year) filename <- tempfile() png(filename=filename) tfr3.pardensity.plot(m3, burnin=10) dev.off() size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) test.ok(test.name) unlink(sim.dir, recursive=TRUE) } test.run.mcmc.simulation.auto <- function() { sim.dir <- tempfile() # run MCMC test.name <- 'running auto Phase II MCMC' start.test(test.name) m <- run.tfr.mcmc(iter='auto', output.dir=sim.dir, auto.conf=list(iter=10, iter.incr=5, max.loops=3, nr.chains=2, thin=1, burnin=5)) stopifnot(get.total.iterations(m$mcmc.list, 0) == 40) test.ok(test.name) test.name <- 'continuing auto Phase II MCMC' start.test(test.name) m <- continue.tfr.mcmc(iter='auto', output.dir=sim.dir, auto.conf=list(max.loops=2)) stopifnot(get.total.iterations(m$mcmc.list, 0) == 60) test.ok(test.name) test.name <- 'running auto Phase III MCMC' start.test(test.name) m3 <- run.tfr3.mcmc(sim.dir=sim.dir, iter='auto', thin=1, auto.conf=list(iter=10, iter.incr=5, max.loops=3, nr.chains=2, thin=1, burnin=5)) stopifnot(get.total.iterations(m3$mcmc.list, 0) == 40) test.ok(test.name) test.name <- 'continuing auto Phase III MCMC' start.test(test.name) m3 <- continue.tfr3.mcmc(sim.dir=sim.dir, iter='auto', auto.conf=list(max.loops=2)) stopifnot(get.total.iterations(m$mcmc.list, 0) == 60) test.ok(test.name) unlink(sim.dir, recursive=TRUE) } test.run.mcmc.simulation.auto.parallel <- function() { sim.dir <- tempfile() # run MCMC test.name <- 'running auto Phase II MCMC in parallel' start.test(test.name) m <- run.tfr.mcmc(iter='auto', output.dir=sim.dir, parallel=TRUE, cltype='SOCK', auto.conf=list(iter=10, iter.incr=5, max.loops=3, nr.chains=2, thin=1, burnin=5)) stopifnot(get.total.iterations(m$mcmc.list, 0) == 40) test.ok(test.name) test.name <- 'continuing auto Phase II MCMC in parallel' start.test(test.name) m <- continue.tfr.mcmc(iter='auto', output.dir=sim.dir, auto.conf=list(max.loops=2), parallel=TRUE, cltype='SOCK') stopifnot(get.total.iterations(m$mcmc.list, 0) == 60) test.ok(test.name) test.name <- 'running auto Phase III MCMC in parallel' start.test(test.name) m3 <- run.tfr3.mcmc(sim.dir=sim.dir, iter='auto', thin=1, parallel=TRUE, cltype='SOCK', auto.conf=list(iter=10, iter.incr=5, max.loops=3, nr.chains=2, thin=1, burnin=5)) stopifnot(get.total.iterations(m3$mcmc.list, 0) == 40) test.ok(test.name) test.name <- 'continuing auto Phase III MCMC in parallel' start.test(test.name) m3 <- continue.tfr3.mcmc(sim.dir=sim.dir, iter='auto', auto.conf=list(max.loops=2), parallel=TRUE, cltype='SOCK' ) stopifnot(get.total.iterations(m$mcmc.list, 0) == 60) test.ok(test.name) test.name <- 'running auto Phase II MCMC in parallel with ClusterOptions' start.test(test.name) #snow::setDefaultClusterOptions(type='SOCK') m <- run.tfr.mcmc(iter='auto', output.dir=sim.dir, parallel=TRUE, replace.output=TRUE, auto.conf=list(iter=10, iter.incr=5, max.loops=3, nr.chains=2, thin=1, burnin=5)) stopifnot(get.total.iterations(m$mcmc.list, 0) == 40) test.ok(test.name) unlink(sim.dir, recursive=TRUE) } test.imputation <- function() { sim.dir <- tempfile() # run MCMC test.name <- 'running MCMC with missing values' start.test(test.name) my.tfr.file <- file.path(find.package('bayesTFR'), 'extdata', 'UN2010_last_obs.txt') m <- run.tfr.mcmc(iter=5, nr.chains=1, output.dir=sim.dir, my.tfr.file=my.tfr.file, wpp.year=2010, present.year=2010) stopifnot(m$mcmc.list[[1]]$finished.iter == 5) stopifnot(get.total.iterations(m$mcmc.list, 0) == 5) stopifnot(bayesTFR:::tfr.set.identical(m, get.tfr.mcmc(sim.dir), include.output.dir=FALSE)) # some countries are not DL because of the missing data # This was the case in UN2008 but not in UN2010 # stopifnot(length(get.countries.index(m$meta)) != get.nr.countries(m$meta)) m3 <- run.tfr3.mcmc(sim.dir=sim.dir, iter=10, nr.chains=1, thin=1, my.tfr.file=my.tfr.file) stopifnot(m3$mcmc.list[[1]]$finished.iter == 10) stopifnot(get.total.iterations(m3$mcmc.list, 0) == 10) stopifnot(bayesTFR:::tfr.set.identical(m3, get.tfr3.mcmc(sim.dir), include.output.dir=FALSE)) test.ok(test.name) test.name <- 'running projections with imputation' start.test(test.name) pred <- tfr.predict(m, burnin=0, burnin3=3, verbose=FALSE) spred <- summary(pred) stopifnot(spred$nr.traj == 5) test.ok(test.name) test.name <- 'plotting imputed TFR trajectories' start.test(test.name) filename <- tempfile() png(filename=filename) tfr.trajectories.plot(pred, 'Eritrea', pi=c(90, 54)) dev.off() size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) test.ok(test.name) test.name <- 'creating parameter maps with imputation' filename <- tempfile() tfr.map(pred, device='png', par.name='Triangle_c4', device.args=list(filename=filename)) dev.off() size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) test.ok(test.name) unlink(sim.dir, recursive=TRUE) } test.existing.simulation <- function() { test.name <- 'retrieving Phase II MCMC results' start.test(test.name) sim.dir <- file.path(find.package("bayesTFR"), "ex-data", 'bayesTFR.output') m <- get.tfr.mcmc(sim.dir, low.memory=FALSE, burnin=25, chain.ids=1) stopifnot(length(m$mcmc.list)==1) stopifnot(dim(m$mcmc.list[[1]]$traces)[1]==35) test.ok(test.name) } test.DLcurve <- function() { test.name <- 'plotting DL curves' start.test(test.name) sim.dir <- file.path(find.package("bayesTFR"), "ex-data", 'bayesTFR.output') m <- get.tfr.mcmc(sim.dir) filename <- tempfile() png(filename=filename) DLcurve.plot(m, 'Burkina Faso') dev.off() size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) test.ok(test.name) test.name <- 'obtaining DL curves and DL sigma' start.test(test.name) tfr <- seq(1, 8, length=100) dl <- tfr.country.dlcurves(tfr, m, "Nigeria", burnin=10) stopifnot(all(dim(dl)==c(50,100))) dls <- tfr.country.dlcurves(tfr, m, "Nigeria", burnin=0, return.sigma=TRUE) stopifnot(all(dim(dls$sigma)==c(60,100))) # world distribution dlw <- tfr.world.dlcurves(tfr, m, countryUc="Nigeria") stopifnot(all(dim(dlw)==c(60,100))) # median of the world DL in the TFR range of 3-4 is smaller than the country-specific median in that range # visual check: # DLcurve.plot(m, 'Nigeria') # lines(tfr, apply(dlw, 2, median)) stopifnot(all(apply(dlw[, tfr > 3 & tfr < 4], 2, median) < apply(dls$dl[, tfr > 3 & tfr < 4], 2, median))) test.ok(test.name) } test.TFRtrajectories <- function() { test.name <- 'plotting TFR trajectories' start.test(test.name) sim.dir <- file.path(find.package("bayesTFR"), "ex-data", 'bayesTFR.output') pred <- get.tfr.prediction(sim.dir=sim.dir) filename <- tempfile() png(filename=filename) tfr.trajectories.plot(pred, 'Australia') dev.off() size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) test.ok(test.name) test.name <- 'tabulating TFR trajectories' start.test(test.name) t <- tfr.trajectories.table(pred, 'Australia', pi=c(90, 80, 70)) stopifnot(all(dim(t) == c(30, 9))) test.ok(test.name) } test.plot.all <- function() { test.name <- 'plotting TFR trajectories and DL curves for all countries' start.test(test.name) sim.dir <- file.path(find.package("bayesTFR"), "ex-data", 'bayesTFR.output') pred <- get.tfr.prediction(sim.dir=sim.dir) mc <- get.tfr.mcmc(sim.dir) dir <- tempfile() tfr.trajectories.plot.all(pred, output.dir=dir, main='XXX trajs') trajf <- length(list.files(dir, pattern='png$', full.names=FALSE)) DLcurve.plot.all(mc, output.dir=dir, main='DL XXX', output.type='jpeg') dlf <- length(list.files(dir, pattern='jpeg$', full.names=FALSE)) unlink(dir, recursive=TRUE) stopifnot(trajf == get.nr.countries(mc$meta)) stopifnot(dlf == length(mc$meta$id_DL)) test.ok(test.name) } test.plot.density <- function() { test.name <- 'plotting parameter density' start.test(test.name) sim.dir <- file.path(find.package("bayesTFR"), "ex-data", 'bayesTFR.output') pred <- get.tfr.prediction(sim.dir=sim.dir) filename <- tempfile() png(filename=filename) tfr.pardensity.cs.plot('Ireland', pred) dev.off() size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) test.ok(test.name) } test.plot.map <- function() { test.name <- 'creating TFR maps via rworldmap' start.test(test.name) sim.dir <- file.path(find.package("bayesTFR"), "ex-data", 'bayesTFR.output') pred <- get.tfr.prediction(sim.dir=sim.dir) filename <- tempfile() tfr.map(pred, year=2043, device='png', device.args=list(filename=filename)) dev.off() size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) test.ok(test.name) test.name <- 'creating parameter maps' filename <- tempfile() tfr.map(pred, year=1985, device='png', par.name='gamma_2', device.args=list(filename=filename)) dev.off() size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) test.ok(test.name) test.name <- 'creating lambda maps' filename <- tempfile() tfr.map(pred, device='png', par.name='lambda', quantile=0.7, device.args=list(filename=filename), numCats=20, catMethod="pretty") dev.off() size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) test.ok(test.name) test.name <- 'creating TFR maps using ggplot2' filename <- paste0(tempfile(), ".png") tfr.ggmap(pred, file.name = filename) size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) tfr.ggmap(pred, same.scale = TRUE, file.name = filename) size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) tfr.ggmap(pred, same.scale = TRUE, year = 2100, file.name = filename) size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) test.ok(test.name) } test.get.parameter.traces <- function() { test.name <- 'getting parameter traces' start.test(test.name) sim.dir <- file.path(find.package("bayesTFR"), "ex-data", 'bayesTFR.output') m <- get.tfr.mcmc(sim.dir, low.memory=TRUE) traces <- get.tfr.parameter.traces(m$mcmc.list, burnin=15, thinning.index=c(4, 25, 29)) stopifnot(nrow(traces)==3) m.check <- get.tfr.mcmc(sim.dir, low.memory=FALSE, burnin=15) stopifnot(traces[1,'chi']==m.check$mcmc.list[[1]]$traces[4,'chi']) #stopifnot(all(traces[c(2,3),'chi']==m.check$mcmc.list[[2]]$traces[c(10,14),'chi'])) # in case of two chains stopifnot(all(traces[c(2,3),'chi']==m.check$mcmc.list[[1]]$traces[c(25,29),'chi'])) m.check <- get.tfr.mcmc(sim.dir, low.memory=FALSE, burnin=30) traces <- get.tfr.parameter.traces(m$mcmc.list, burnin=30, thin=8) stopifnot(nrow(traces)==4) stopifnot(traces[2,'psi']==m.check$mcmc.list[[1]]$traces[9,'psi']) #stopifnot(traces[4,'psi']==m.check$mcmc.list[[2]]$traces[10,'psi']) stopifnot(traces[4,'psi']==m.check$mcmc.list[[1]]$traces[25,'psi']) test.ok(test.name) } test.median.adjust <- function() { test.name <- 'adjusting median' start.test(test.name) sim.dir <- file.path(find.package("bayesTFR"), "ex-data", 'bayesTFR.output') m <- get.tfr.mcmc(sim.dir) pred.dir <- tempfile() pred <- tfr.predict(m, burnin=0, output.dir=pred.dir, nr.traj=10, save.as.ascii=0, verbose=FALSE, use.tfr3=FALSE) country.obj1 <- get.country.object('Kenya', m$meta) country.obj2 <- get.country.object('Mongolia', m$meta) new.pred <- tfr.median.adjust(pred.dir, countries=c('Kenya', 'Mongolia')) orig.median1 <- get.median.from.prediction(new.pred, country.obj1$index, country.obj1$code, adjusted=FALSE) new.median1 <- get.median.from.prediction(new.pred, country.obj1$index, country.obj1$code, adjusted=TRUE) orig.median2 <- get.median.from.prediction(new.pred, country.obj2$index, country.obj2$code, adjusted=FALSE) new.median2 <- get.median.from.prediction(new.pred, country.obj2$index, country.obj2$code, adjusted=TRUE) stopifnot(sum(orig.median1==new.median1)==1) # only the present year should be equal stopifnot(sum(orig.median2==new.median2)==1) test.ok(test.name) test.name <- 'plotting adjusted TFR trajectories' start.test(test.name) filename <- tempfile() png(filename=filename) tfr.trajectories.plot(new.pred, 'Kenya', adjusted.only=FALSE) dev.off() size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) test.ok(test.name) test.name <- 'writing summary files' start.test(test.name) write.projection.summary(sim.dir, adjusted=FALSE, output.dir=pred.dir) write.projection.summary(sim.dir, adjusted=TRUE, output.dir=pred.dir) test.ok(test.name) unlink(pred.dir) } test.estimate.mcmc.with.suppl.data <- function() { sim.dir <- tempfile() # run MCMC test.name <- 'estimating MCMC using supplemental data' start.test(test.name) m <- run.tfr.mcmc(nr.chains=1, iter=30, thin=1, output.dir=sim.dir, start.year=1750, seed=1) stopifnot(length(m$meta$suppl.data$regions$country_code) == 103) stopifnot(all(dim(m$meta$suppl.data$tfr_matrix) == c(40, 103))) test.ok(test.name) # continue MCMC test.name <- 'continuing MCMC with supplemental data' start.test(test.name) m <- continue.tfr.mcmc(iter=10, output.dir=sim.dir) stopifnot(m$mcmc.list[[1]]$finished.iter == 40) stopifnot(get.total.iterations(m$mcmc.list, 0) == 40) stopifnot(!is.element(900, m$meta$regions$country_code)) # 'World' should not be included test.ok(test.name) # run MCMC for an aggregation test.name <- 'estimating MCMC for extra areas with supplemental data' start.test(test.name) data.dir <- file.path(find.package("bayesTFR"), 'extdata') m <- run.tfr.mcmc.extra(sim.dir=sim.dir, my.tfr.file=file.path(data.dir, 'my_tfr_template.txt'), burnin=0, verbose=TRUE) stopifnot(is.element(900, m$meta$regions$country_code)) # 'World' should be included stopifnot(is.element(900, m$meta$suppl.data$regions$country_code)) test.ok(test.name) # run prediction test.name <- 'running projections for simulation with supplemental data' start.test(test.name) pred <- tfr.predict(m, burnin=10, verbose=FALSE, save.as.ascii=0, rho=NULL, sigmaAR1=NULL, use.tfr3=FALSE) spred <- summary(pred) stopifnot(spred$nr.traj == 30) stopifnot(!is.element(903, pred$mcmc.set$regions$country_code)) npred <- dim(pred$tfr_matrix_reconstructed)[2] test.ok(test.name) unlink(sim.dir, recursive=TRUE) } test.subnational.predictions <- function() { sim.dir <- tempfile() test.name <- 'predicting subnational TFR' start.test(test.name) my.subtfr.file <- file.path(find.package("bayesTFR"), 'extdata', 'subnational_tfr_template.txt') nat.dir <- file.path(find.package("bayesTFR"), "ex-data", "bayesTFR.output") # Subnational projections for Australia and Canada; start 1 time period before national projections preds <- tfr.predict.subnat(c(36, 124), my.tfr.file=my.subtfr.file, sim.dir=nat.dir, output.dir=sim.dir, start.year=2011) stopifnot(all(names(preds) %in% c("36", "124"))) stopifnot(nrow(get.countries.table(preds[["36"]]))==8) filename <- tempfile() pdf(file=filename) tfr.trajectories.plot(preds[["36"]], "Queensland") tfr.trajectories.plot(preds[["124"]], "Quebec") dev.off() size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) unlink(sim.dir, recursive=TRUE) # Subnational projections for Canada; start year after the start of national projections sim.dir <- tempfile() preds <- tfr.predict.subnat("Canada", my.tfr.file=my.subtfr.file, sim.dir=nat.dir, output.dir=sim.dir, start.year=2018) stopifnot(all(names(preds) %in% c("124"))) spred <- summary(preds[["124"]], "Quebec") stopifnot(min(spred$projection.years) == 2018) unlink(sim.dir, recursive=TRUE) # Subnational projections for Canada with one region (Alberta) having imputed values sim.dir <- tempfile() mytfr <- read.delim(my.subtfr.file, check.names = FALSE) mytfr[mytfr$country_code == 124 & mytfr$reg_code == 658, "last.observed"] <- 1999 my.subtfr.file.mis <- tempfile() write.table(mytfr, file = my.subtfr.file.mis, row.names = FALSE, quote = FALSE, sep = "\t") preds <- tfr.predict.subnat("Canada", my.tfr.file=my.subtfr.file.mis, sim.dir=nat.dir, output.dir=sim.dir, start.year=2013) obs <- preds[["124"]]$mcmc.set$meta$tfr_matrix_observed[,"658"] recon <- preds[["124"]]$tfr_matrix_reconstructed[,"658"] stopifnot(all(is.na(obs[c("2003", "2008")]))) # observed is NA stopifnot(all(!is.na(obs["1998"]))) # last observed non-NA stopifnot(all(!is.na(recon[c("2003", "2008")]))) # missing values were reconstructed unlink(sim.dir, recursive=TRUE) unlink(my.subtfr.file.mis) # Subnational projections for all countries in the file sim.dir <- tempfile() preds <- tfr.predict.subnat(c(36, 218, 124), my.tfr.file=my.subtfr.file, sim.dir=nat.dir, output.dir=sim.dir, end.year=2050) stopifnot(length(preds) == 3) # Retrieve results for all countries preds <- get.regtfr.prediction(sim.dir) stopifnot(length(preds) == 3) t <- tfr.trajectories.table(preds[["218"]], "Bolivar") stopifnot(all(dim(t) == c(17, 7))) # Retrieve results for one country pred <- get.regtfr.prediction(sim.dir, 218) spred <- summary(pred, "Loja") stopifnot(max(spred$projection.years) == 2048) # Retrieve trajectories trajs <- get.tfr.trajectories(preds[["124"]], "Alberta") stopifnot(all(dim(trajs) == c(7, 30))) unlink(sim.dir, recursive=TRUE) # Annual subnational projections my.subtfr.file.annual <- tempfile() dat <- data.table::fread(my.subtfr.file) # load the data and save only the last time period, pretending this is a single year data point dat <- dat[, .(country_code, country, reg_code, name, `2008` = `2005-2010`)] data.table::fwrite(dat, file = my.subtfr.file.annual, sep = "\t") # save it sim.dir <- tempfile() preds <- tfr.predict.subnat(c(36, 218, 124), my.tfr.file=my.subtfr.file.annual, sim.dir=nat.dir, output.dir=sim.dir, start.year = 2009, end.year=2030, annual = TRUE) # Retrieve trajectories trajs <- get.tfr.trajectories(preds[["124"]], "Alberta") stopifnot(all(dim(trajs) == c(23, 30))) # from 2008 to 2030 stopifnot(all(c(2021, 2029) %in% as.integer(rownames(trajs)))) pred <- get.regtfr.prediction(sim.dir, 218) spred <- summary(pred, "Manabi") stopifnot(max(spred$projection.years) == 2030) t <- tfr.trajectories.table(preds[["124"]], "Ontario") stopifnot(max(as.integer(rownames(t))) == 2030) stopifnot(all(c(2009, 2014, 2029) %in% as.integer(rownames(t)))) unlink(sim.dir, recursive=TRUE) unlink(my.subtfr.file.annual) test.ok(test.name) } test.reproduce.simulation <- function() { sim.dir <- tempfile() test.name <- 'reproducing simulation' start.test(test.name) seed <- 1234 m1 <- run.tfr.mcmc(iter=5, nr.chains=2, output.dir=sim.dir, start.year=1950, seed = seed) res1 <- summary(m1)$phase2$results$statistics m2 <- run.tfr.mcmc(iter=5, nr.chains=2, output.dir=sim.dir, start.year=1950, seed = seed, replace.output = TRUE) res2 <- summary(m2)$phase2$results$statistics stopifnot(!is.null(res1) && all(res1 == res2)) m3 <- run.tfr.mcmc(iter=5, nr.chains=2, output.dir=sim.dir, start.year=1950, replace.output = TRUE) # no seed res3 <- summary(m3)$phase2$results$statistics stopifnot(!all(res3 == res2)) # parallel m1p <- run.tfr.mcmc(iter=5, nr.chains=2, output.dir=sim.dir, start.year=1950, seed = seed, replace.output = TRUE, parallel = TRUE, ft_verbose = TRUE) res1p <- summary(m1p)$phase2$results$statistics m2p <- run.tfr.mcmc(iter=5, nr.chains=2, output.dir=sim.dir, start.year=1950, seed = seed, replace.output = TRUE, parallel = TRUE, ft_verbose = TRUE) res2p <- summary(m2p)$phase2$results$statistics stopifnot(!is.null(res1p) && all(res1p == res2p)) m3p <- run.tfr.mcmc(iter=5, nr.chains=2, output.dir=sim.dir, start.year=1950, replace.output = TRUE, parallel = TRUE, ft_verbose = TRUE) # no seed res3p <- summary(m3p)$phase2$results$statistics stopifnot(!all(res3p == res2p)) # with uncertainty mu1 <- run.tfr.mcmc(iter=5, nr.chains=2, output.dir=sim.dir, start.year=1950, seed = seed, uncertainty = TRUE, replace.output = TRUE) resu1 <- summary(mu1)$phase2$results$statistics mu2 <- run.tfr.mcmc(iter=5, nr.chains=2, output.dir=sim.dir, start.year=1950, seed = seed, uncertainty = TRUE, replace.output = TRUE) resu2 <- summary(mu2)$phase2$results$statistics mu3 <- run.tfr.mcmc(iter=5, nr.chains=2, output.dir=sim.dir, start.year=1950, uncertainty = TRUE, replace.output = TRUE) stopifnot(!is.null(resu1) && all(resu1 == resu2)) # includes both phase 2 and 3 parameters stopifnot(!all(resu1 == summary(mu3)$phase2$results$statistics)) test.ok(test.name) unlink(sim.dir, recursive=TRUE) } test.run.mcmc.simulation.with.uncertainty <- function(wpp.year = 2019) { sim.dir <- tempfile() # run MCMC test.name <- 'running MCMC with uncertainty' start.test(test.name, wpp.year) m <- run.tfr.mcmc(iter=5, nr.chains=1, output.dir=sim.dir, uncertainty = TRUE, wpp.year = wpp.year) stopifnot(m$mcmc.list[[1]]$finished.iter == 5) stopifnot(get.total.iterations(m$mcmc.list, 0) == 5) stopifnot(bayesTFR:::tfr.set.identical(m, get.tfr.mcmc(sim.dir), include.output.dir=FALSE)) # continue MCMC test.name <- 'continuing MCMC with uncertainty' start.test(test.name, wpp.year) m <- continue.tfr.mcmc(iter=5, output.dir=sim.dir) stopifnot(m$mcmc.list[[1]]$finished.iter == 10) stopifnot(get.total.iterations(m$mcmc.list, 0) == 10) stopifnot(m$mcmc.list[[1]]$uncertainty) test.ok(test.name) # summary of MCMC test.name <- 'summary of MCMC with uncertainty' start.test(test.name, wpp.year) sm <- summary(m, country = "Niger") sm2 <- summary(m, country = "Japan") smg <- summary(m) stopifnot(!sm$phase3$estimation) stopifnot(sm2$phase3$estimation) stopifnot(!is.null(smg$phase3)) test.ok(test.name) # run MCMC for an extra country test.name <- 'running MCMC with uncertainty for extra country' start.test(test.name, wpp.year) countries <- c(124, 840) m <- run.tfr.mcmc.extra(sim.dir=sim.dir, countries = countries, iso.unbiased = countries, burnin=0, uncertainty = TRUE) stopifnot(sum(m$meta$regions$country_code %in% countries) == length(countries)) # countries were replaced and not added test.ok(test.name) test.name <- 'checking Phase III with uncertainty' start.test(test.name, wpp.year) m3 <- get.tfr3.mcmc(sim.dir=sim.dir) stopifnot(m3$mcmc.list[[1]]$finished.iter == 10) stopifnot(get.total.iterations(m3$mcmc.list, 0) == 10) test.ok(test.name) # run prediction test.name <- 'running projections with uncertainty' start.test(test.name, wpp.year) pred <- tfr.predict(m, burnin=0, burnin3=0, uncertainty = TRUE) spred <- summary(pred) stopifnot(spred$nr.traj == 10) test.ok(test.name) npred <- dim(pred$tfr_matrix_reconstructed)[2] # run MCMC and prediction for extra country test.name <- 'running projections with uncertainty for extra country' start.test(test.name, wpp.year) m <- run.tfr.mcmc.extra(sim.dir=sim.dir, countries=840, burnin=0, uncertainty = TRUE) # run prediction only for 840 pred <- tfr.predict.extra(sim.dir=sim.dir, countries = 840, verbose=FALSE, uncertainty = TRUE) stopifnot(dim(pred$tfr_matrix_reconstructed)[2] == npred) stopifnot(!is.null(bayesTFR:::get.trajectories(pred, 840)$trajectories)) stopifnot(pred$use.tfr3) test.ok(test.name) test.name <- 'getting bias and sd models' start.test(test.name, wpp.year) bias_sd <- tfr.bias.sd(m, "Nigeria") stopifnot(!is.null(bias_sd)) test.ok(test.name) test.name <- 'plotting uncertainty' start.test(test.name, wpp.year) filename <- tempfile() png(filename=filename) g <- tfr.estimation.plot(pred, "US", save.image = FALSE) print(g) dev.off() size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) test.ok(test.name) test.name <- 'write projection summary' start.test(test.name, wpp.year) write.projection.summary(sim.dir, est.uncertainty = FALSE) write.projection.summary(sim.dir, est.uncertainty = TRUE) # TODO: add a check of something test.ok(test.name) unlink(sim.dir, recursive=TRUE) } test.run.annual.simulation <- function(wpp.year = 2019) { sim.dir <- tempfile() test.name <- 'running MCMC with annual data' start.test(test.name, wpp.year) m <- run.tfr.mcmc(iter = 5, nr.chains = 1, output.dir = sim.dir, annual = TRUE, ar.phase2 = TRUE, present.year = 2018, wpp.year = wpp.year) stopifnot(get.total.iterations(m$mcmc.list, 0) == 5) stopifnot(all(1953:2018 %in% rownames(m$meta$tfr_matrix))) stopifnot(bayesTFR:::tfr.set.identical(m, get.tfr.mcmc(sim.dir), include.output.dir=FALSE)) stopifnot("rho_phase2" %in% tfr.parameter.names(meta = m$meta)) test.ok(test.name) test.name <- 'running annual MCMC for extra country' start.test(test.name, wpp.year) countries <- c(900, 908) m <- run.tfr.mcmc.extra(sim.dir = sim.dir, countries = countries, burnin = 0) stopifnot(countries %in% m$meta$regions$country_code) test.ok(test.name) test.name <- 'running Phase III MCMC with annual data' start.test(test.name, wpp.year) m3 <- run.tfr3.mcmc(sim.dir=sim.dir, iter=20, thin=1, nr.chains=2) stopifnot(get.total.iterations(m3$mcmc.list, 0) == 40) stopifnot(bayesTFR:::tfr.set.identical(m3, get.tfr3.mcmc(sim.dir), include.output.dir=FALSE)) test.ok(test.name) test.name <- 'running annual projections' start.test(test.name, wpp.year) pred <- tfr.predict(m, burnin=0, burnin3=0) spred <- summary(pred) stopifnot(spred$nr.traj == 5) stopifnot(all(2019:2100 %in% spred$projection.years)) stopifnot(all(c(908, 900) %in% get.countries.table(pred)$code)) test.ok(test.name) unlink(sim.dir, recursive=TRUE) }