test_that("reconc_TDcond simple example", { # Simple example with # - 12 bottom # - 10 upper: year, 6 bi-monthly, 3 quarterly A <- matrix(data=c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1), nrow=10,byrow = TRUE) # Define means and vars for the forecasts means <- c(90,31,32,31,33,31,32,62,63,64,rep(15,12)) vars <- c(20,4,4,4,4,4,4,8,8,8,rep(2,12))^2 # create the lists for reconciliation ## upper fc_upper <- list(mu = means[1:10], Sigma = diag(vars[1:10])) ## bottom fc_bottom <- list() for(i in seq(ncol(A))){ fc_bottom[[i]] <-as.integer(.distr_sample(list(mean=means[i+10],sd = vars[i+10]), "gaussian", 2e4)) fc_bottom[[i]][which(fc_bottom[[i]]<0)] <- 0 # set-negative-to-zero } # reconciliation with TDcond res.TDcond <- reconc_TDcond(A, fc_bottom, fc_upper, bottom_in_type = "samples", num_samples = 2e4, return_type = "pmf", seed = 42) res.TDcond2 <- reconc_TDcond(A, fc_bottom, fc_upper, bottom_in_type = "samples", num_samples = 2e4, return_type = "samples", seed = 42) res.TDcond3 <- reconc_TDcond(A, fc_bottom, fc_upper, bottom_in_type = "samples", num_samples = 2e4, return_type = "all", seed = 42) # Check if all return_type return identical results expect_identical(res.TDcond$bottom_reconciled$pmf,res.TDcond3$bottom_reconciled$pmf) expect_identical(res.TDcond2$bottom_reconciled$samples,res.TDcond3$bottom_reconciled$samples) # Compute the reconciliation analytically (everything Gaussian) ## Save bottom forecast parameters fc_bott_gauss <- list(mu = means[11:22], Sigma = diag(vars[11:22])) # Compute the reconciled precision inv_B <- diag(1/diag(fc_bott_gauss$Sigma)) inv_U <- diag(1/diag(fc_upper$Sigma)) At_inv_U_A <- crossprod(A,inv_U)%*%A # Here we use the reduced A with only the lowest level Au <- A[.lowest_lev(A),] inv_A_B_At <- solve(Au%*%tcrossprod(fc_bott_gauss$Sigma,Au)) # formulas for the reconciled precision, covariance and mean bott_reconc_Prec <- inv_B+At_inv_U_A-crossprod(Au,inv_A_B_At)%*%Au bott_reconc_cov <- solve(bott_reconc_Prec) bott_reconc_mean <- fc_bott_gauss$mu + tcrossprod(bott_reconc_cov,A)%*%inv_U%*%(fc_upper$mu-A%*%fc_bott_gauss$mu) # compute the difference between empirical and analytical m_diff <- unlist(lapply(res.TDcond$bottom_reconciled$pmf,PMF.get_mean)) - bott_reconc_mean expect_true(all(abs(m_diff/bott_reconc_mean)<8e-3)) # The variances are different #unlist(lapply(res.TDcond$pmf$bottom,PMF.get_var)) #diag(bott_reconc_cov) })