test_that("Test effective sample size", { S = matrix(data = c(1,1,1,0,0,1), nrow=3, byrow = TRUE) # ----------- n = 200 b1 = stats::rpois(n=n, lambda = 3) b2 = stats::rpois(n=n, lambda = 4) u = stats::rnorm(n=n, mean = 30, sd = 1) B = cbind(b1,b2) c = matrix(S[1,]) b = (B %*% c) w = .compute_weights(b, u, "samples", "continuous") check_w = .check_weigths(w, n_eff_min=200) expect_equal(check_w$warning, TRUE) expect_equal(check_w$warning_code, 1) expect_equal(check_w$n_eff, n) # Try the warning message # base_forecast = list(u,b1,b2) # a = reconc_BUIS(S, base_forecast, in_type = "samples", distr = list("continuous","discrete","discrete"), seed=42) # ----------- n = 199 b1 = stats::rpois(n=n, lambda = 3) b2 = stats::rpois(n=n, lambda = 4) u = stats::rnorm(n=n, mean = 30, sd = 1) B = cbind(b1,b2) c = matrix(S[1,]) b = (B %*% c) w = .compute_weights(b, u, "samples", "continuous") check_w = .check_weigths(w, n_eff_min=200) expect_equal(check_w$warning, TRUE) expect_equal(check_w$warning_code, 1) expect_equal(check_w$n_eff, n) # Try the warning message # base_forecast = list(u,b1,b2) # a = bayesRecon::reconc_BUIS(S, base_forecast, in_type = "samples", distr = list("continuous","discrete","discrete"), seed=42) # ----------- n = 2000 b1 = stats::rpois(n=n, lambda = 3) b2 = stats::rpois(n=n, lambda = 4) u = stats::rnorm(n=n, mean = 18, sd = 1) B = cbind(b1,b2) c = matrix(S[1,]) b = (B %*% c) w = .compute_weights(b, u, "samples", "continuous") check_w = .check_weigths(w, n_eff_min=200, p_n_eff=0.01) expect_equal(check_w$warning, TRUE) expect_equal(check_w$warning_code, c(2,3)) expect_equal(check_w$n_eff < 200, TRUE) # Try the warning message # base_forecast = list(u,b1,b2) # a = bayesRecon::reconc_BUIS(S, base_forecast, in_type = "samples", distr = list("continuous","discrete","discrete"), seed=42) })