R Under development (unstable) (2023-09-29 r85235 ucrt) -- "Unsuffered Consequences" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > start.test <- function(name) cat('\n<=== Starting test of', name,'====\n') > test.ok <- function(name) cat('\n==== Test of', name, 'OK.===>\n') > > test.run.annual.simulation <- function(parallel = FALSE) { + # run MCMC + test.name <- 'running annual migration MCMC for US states' + if(parallel) test.name <- paste(test.name, "(in parallel)") + start.test(test.name) + us.mig.file <- file.path(find.package("bayesMig"), "extdata", "USmigrates.txt") + sim.dir <- tempfile() + m <- run.mig.mcmc(nr.chains = 2, iter = 30, thin = 1, my.mig.file = us.mig.file, + output.dir = sim.dir, present.year = 2017, annual = TRUE, parallel = parallel) + stopifnot(m$mcmc.list[[1]]$finished.iter == 30) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 60) + + par.values <- get.mig.parameter.traces(m$mcmc.list, burnin = 5) + stopifnot(all(dim(par.values) == c(50, 4))) + par.values.cs <- get.mig.parameter.traces.cs(m$mcmc.list, + country.obj = get.country.object("California", meta = m$meta), + burnin = 5, par.names = "phi_c") + stopifnot(all(dim(par.values.cs) == c(50, 1))) + test.ok(test.name) + + # Prediction + test.name <- 'running annual projections' + start.test(test.name) + pred <- mig.predict(sim.dir = sim.dir, burnin = 10, end.year = 2050) + spred <- summary(pred) + stopifnot(spred$nr.traj == 40) + stopifnot(nrow(get.countries.table(pred))== 52) + stopifnot(dim(pred$quantiles)[3] == length(2017:2050)) + test.ok(test.name) + + # output + test.name <- 'analyzing output of annual projections' + start.test(test.name) + tab <- mig.trajectories.table(pred, "Hawaii") + years <- as.integer(rownames(tab)) + should.be.years <- 2001:2050 + stopifnot(length(years) == length(should.be.years)) + stopifnot(all(years == should.be.years)) + stopifnot(all(dim(tab) == c(length(should.be.years), 5))) + test.ok(test.name) + + unlink(sim.dir, recursive=TRUE) + } > > test.run.national.simulation <- function(parallel = FALSE) { + # run MCMC + test.name <- 'running national migration MCMC' + if(parallel) test.name <- paste(test.name, "(in parallel)") + start.test(test.name) + + sim.dir <- tempfile() + m <- run.mig.mcmc(nr.chains = 2, iter = 60, thin = 2, output.dir = sim.dir, parallel = parallel, + wpp.year = 2019) + stopifnot(m$mcmc.list[[1]]$finished.iter == 60) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 120) + test.ok(test.name) + + # Prediction + test.name <- 'running national projections' + start.test(test.name) + pred <- mig.predict(sim.dir = sim.dir, burnin = 10, end.year = 2050) + spred <- summary(pred) + stopifnot(spred$nr.traj == 50) + stopifnot(nrow(get.countries.table(pred))== 201) + stopifnot(dim(pred$quantiles)[3] == length(seq(2018, 2048, by = 5))) + test.ok(test.name) + + # output + test.name <- 'analyzing output of national projections' + start.test(test.name) + tab <- mig.trajectories.table(pred, "France") + years <- as.integer(rownames(tab)) + should.be.years <- seq(1953, 2048, by = 5) + stopifnot(length(years) == length(should.be.years)) + stopifnot(all(years == should.be.years)) + test.ok(test.name) + + unlink(sim.dir, recursive=TRUE) + } > > test.run.annual.national.simulation <- function(parallel = FALSE) { + # run MCMC using wpp2022 + test.name <- 'running annual national migration MCMC' + if(parallel) test.name <- paste(test.name, "(in parallel)") + start.test(test.name) + + sim.dir <- tempfile() + + # find small countries to be excluded (take it from bayesTFR include dataset) + data(include_2022, package = "bayesTFR") + small.countries <- subset(include_2022, include_code == 1)$country_code + + m <- run.mig.mcmc(nr.chains = 2, iter = 60, thin = 2, output.dir = sim.dir, + parallel = parallel, annual = TRUE, wpp.year = 2022, + present.year = 2021, exclude.from.world = small.countries, + use.cummulative.threshold = TRUE) + + stopifnot(m$meta$nr.countries.est == 203) + stopifnot(m$meta$nr.countries == 236) + stopifnot(m$mcmc.list[[1]]$finished.iter == 60) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 120) + test.ok(test.name) + + # Prediction + test.name <- 'running annual national projections' + start.test(test.name) + pred <- mig.predict(sim.dir = sim.dir, burnin = 10, end.year = 2050) + spred <- summary(pred) + stopifnot(spred$nr.traj == 50) + stopifnot(nrow(get.countries.table(pred))== 236) + stopifnot(dim(pred$quantiles)[3] == length(seq(2021, 2050, by = 1))) + test.ok(test.name) + + # output + test.name <- 'analyzing output of annual national projections' + start.test(test.name) + tab <- mig.trajectories.table(pred, "Ireland") + years <- as.integer(rownames(tab)) + should.be.years <- seq(1951, 2050, by = 1) + stopifnot(length(years) == length(should.be.years)) + stopifnot(all(years == should.be.years)) + test.ok(test.name) + + unlink(sim.dir, recursive=TRUE) + } > > > test.run.annual.national.simulation.with.interpolation <- function(parallel = FALSE) { + # run MCMC + test.name <- 'running annual national migration MCMC with interpolated data' + if(parallel) test.name <- paste(test.name, "(in parallel)") + start.test(test.name) + + sim.dir <- tempfile() + m <- run.mig.mcmc(nr.chains = 2, iter = 60, thin = 2, output.dir = sim.dir, + parallel = parallel, annual = TRUE, wpp.year = 2019) + + stopifnot(m$mcmc.list[[1]]$finished.iter == 60) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 120) + test.ok(test.name) + + # Prediction + test.name <- 'running annual national projections with interpolated data' + start.test(test.name) + pred <- mig.predict(sim.dir = sim.dir, burnin = 10, end.year = 2050) + spred <- summary(pred) + stopifnot(spred$nr.traj == 50) + stopifnot(nrow(get.countries.table(pred))== 201) + stopifnot(dim(pred$quantiles)[3] == length(seq(2020, 2050, by = 1))) + test.ok(test.name) + + # output + test.name <- 'analyzing output of annual national projections with interpolated data' + start.test(test.name) + tab <- mig.trajectories.table(pred, "Ireland") + years <- as.integer(rownames(tab)) + should.be.years <- seq(1950, 2050, by = 1) + stopifnot(length(years) == length(should.be.years)) + stopifnot(all(years == should.be.years)) + test.ok(test.name) + + unlink(sim.dir, recursive=TRUE) + } > > test.include.code.and.last.observed <- function(parallel = FALSE) { + # run MCMC + test.name <- 'running annual migration MCMC with states excluded and missing data' + if(parallel) test.name <- paste(test.name, "(in parallel)") + start.test(test.name) + us.mig.file <- file.path(find.package("bayesMig"), "extdata", "USmigrates.txt") + mig <- bayesTFR:::read.tfr.file(file = us.mig.file) + mig$include_code <- 2 + mig$last.observed <- 2017 + mig[mig$name %in% c("Rhode Island", "District of Columbia"), "include_code"] <- 1 # used only for prediction + mig[mig$name == "Hawaii", "include_code"] <- 0 # excluded + mig[mig$name == "Washington", "last.observed"] <- 2015 # 2 data points will be imputed + mig[mig$name == "Idaho", "2017"] <- NA # 1 data point missing without changing last.observed + migfile <- tempfile() + write.table(mig, file = migfile, sep='\t', row.names=FALSE) + + sim.dir <- tempfile() + m <- run.mig.mcmc(nr.chains = 2, iter = 30, thin = 1, my.mig.file = migfile, + output.dir = sim.dir, present.year = 2017, annual = TRUE, parallel = parallel, + exclude.from.world = 29) # also exclude Nevada + + stopifnot((m$meta$nr.countries - m$meta$nr.countries.est) == 3) # 3 countries excluded from estimation + stopifnot(! "Hawaii" %in% m$meta$regions$country_name) # Hawaii is not included at all + stopifnot(all(is.na(m$meta$mig.rates[m$meta$regions$country_name == "Washington", c("2016", "2017")]))) # missing data + test.ok(test.name) + + # Prediction + test.name <- 'running annual projections with data imputation' + start.test(test.name) + pred <- mig.predict(sim.dir = sim.dir, burnin = 10, end.year = 2050) + + imputed <- pred$mig.rates.reconstructed[m$meta$regions$country_name == "Washington", c("2016", "2017")] + orig <- m$meta$mig.rates.all[m$meta$regions$country_name == "Washington", c("2016", "2017")] + stopifnot(all(!is.na(imputed))) # was it imputed + stopifnot(all.equal(imputed, orig) > 0.1) # relative difference is big + stopifnot(nrow(get.countries.table(pred))== 51) # 51 states included + stopifnot(!is.na(pred$mig.rates.reconstructed[m$meta$regions$country_name == "Idaho", "2017"])) # Idaho was imputed + stopifnot(dim(pred$quantiles)[3] == length(2017:2050)) + test.ok(test.name) + + unlink(migfile) + unlink(sim.dir, recursive=TRUE) + } > > proc.time() user system elapsed 0.18 0.01 0.20