test_that("make sure margCompareErrorCheckF is catching errors", { skip_on_cran() skip_if_not_installed('rstanarm') set.seed(500) modelData <- rstanarm::wells modelData$assoc <- ifelse(modelData$assoc==1, 'Y', 'N') rowMiss <- sample(1:nrow(modelData), size=10, replace=F) colMiss <- sample(1:ncol(modelData), size=10, replace=T) for(i in 1:10){ modelData[rowMiss[[i]], colMiss[[i]]] <- NA } logitModel <- suppressWarnings(rstanarm::stan_glm(switch ~ dist*educ + arsenic + I(arsenic^2) + assoc, data=modelData, family=binomial, refresh=0, chains=2, iter=500)) margTestError <- bayesMargEffF(logitModel, marginal_effect='educ', start_value=5, end_value=0, digits=4) margTestNoError <- bayesMargEffF(logitModel, marginal_effect='educ', start_value=5, end_value=0, digits=4, at=list(dist=c(20, 30))) expect_error(margCompareErrorCheckF(marg_list=1, ci=.95, hdi_interval=T, centrality='mean'), regexp="The 'marg_list' argument must have class 'bayesmeanscale_marg'!") expect_error(margCompareErrorCheckF(margTestNoError, ci=1.1, hdi_interval=T, centrality='mean'), regexp="The credible interval level must be between 0 and 1!") expect_error(margCompareErrorCheckF(margTestNoError, ci=.95, hdi_interval="W", centrality='mean'), regexp="This is a logical argument!") expect_no_error(margCompareErrorCheckF(margTestNoError, ci=.95, hdi_interval=T, centrality='mean')) expect_error(margCompareErrorCheckF(margTestError, ci=.95, hdi_interval=T, centrality='mean'), regexp="There is only 1 marginal effect, so nothing to compare to!") })