test_that("make sure all configurations of bayesMargEffF run without error", { skip_on_cran() skip_if_not_installed('rstanarm') skip_if_not_installed('tibble') expect_no_error(bayesMargEffF(logitModel2, marginal_effect='log(dist)', start_value=4, end_value=3, at=list(educ=c(0, 12)), n_draws=500)) expect_no_error(bayesMargEffF(logitModel, marginal_effect='dist', start_value=50, end_value=20, at=list(educ=c(0, 12)), n_draws=500)) expect_no_error(bayesMargEffF(logitModel, marginal_effect='dist', start_value=50, end_value=20, at=list(educ=c(0, 12)), hdi_interval=F, n_draws=500)) expect_no_error(bayesMargEffF(logitModel, marginal_effect='dist', start_value=50, end_value=20, at=list(educ=c(0, 12)), at_means=T, n_draws=500)) expect_no_error(bayesMargEffF(logitModel, marginal_effect='dist', start_value=50, end_value=20, at=list(educ=c(0, 12)), at_means=T, hdi_interval=F, n_draws=500)) }) test_that("make sure all configurations of bayesMargEffF run without warning", { skip_on_cran() skip_if_not_installed('rstanarm') skip_if_not_installed('tibble') expect_no_warning(bayesMargEffF(logitModel2, marginal_effect='log(dist)', start_value=4, end_value=3, at=list(educ=c(0, 12)), n_draws=500)) expect_no_warning(bayesMargEffF(logitModel, marginal_effect='dist', start_value=50, end_value=20, at=list(educ=c(0, 12)), n_draws=500)) expect_no_warning(bayesMargEffF(logitModel, marginal_effect='dist', start_value=50, end_value=20, at=list(educ=c(0, 12)), hdi_interval=F, n_draws=500)) expect_no_warning(bayesMargEffF(logitModel, marginal_effect='dist', start_value=50, end_value=20, at=list(educ=c(0, 12)), at_means=T, n_draws=500)) expect_no_warning(bayesMargEffF(logitModel, marginal_effect='dist', start_value=50, end_value=20, at=list(educ=c(0, 12)), at_means=T, hdi_interval=F, n_draws=500)) }) test_that('make sure ame and mem are close but not exactly the same', { skip_on_cran() skip_if_not_installed('rstanarm') skip_if_not_installed('tibble') set.seed(500) ame <- bayesMargEffF(logitModel, marginal_effect='dist', start_value=50, end_value=20, at=list(educ=c(0, 12)), digits=6)$diffTable %>% subset(., select=c(mean)) mem <- bayesMargEffF(logitModel, marginal_effect='dist', start_value=50, end_value=20, at=list(educ=c(0, 12)), digits=6, at_means=T)$diffTable %>% subset(., select=c(mean)) diffs <- abs(ame-mem) expect_gt(diffs[1,], 0) expect_gt(diffs[2,], 0) expect_lt(diffs[1,], abs(ame[1,]*1.1 - ame[1,])) expect_lt(diffs[2,], abs(ame[2,]*1.1 - ame[2,])) })