R Under development (unstable) (2024-12-04 r87420 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(bayesLife) Loading required package: bayesTFR > > start.test <- function(name, wpp.year = NULL) cat('\n<=== Starting test of', name, if(!is.null(wpp.year)) paste0('(WPP ', wpp.year, ')') else '', '====\n') > test.ok <- function(name) cat('\n==== Test of', name, 'OK.===>\n') > > test.get.wpp.data <- function(wpp.year=2010) { + test.name <- 'getting WPP data' + start.test(test.name, wpp.year) + ncountries <- list('2008'=158, '2010'=159, '2012'=162, '2015'=178) + data <- bayesLife:::get.wpp.e0.data(wpp.year=wpp.year, present.year=if(wpp.year>2012) 2015 else 2010) + stopifnot(length(dim(data$e0.matrix))==2) + stopifnot(ncol(data$e0.matrix)==ncountries[[as.character(wpp.year)]]) + stopifnot(nrow(data$e0.matrix)==if(wpp.year>2012) 13 else 12) + test.ok(test.name) + } > > test.estimate.mcmc <- function(compression='None', wpp.year = 2019) { + sim.dir <- tempfile() + # run MCMC + test.name <- 'estimating MCMC' + start.test(test.name, wpp.year) + m <- run.e0.mcmc(nr.chains = 1, iter = 10, thin = 1, output.dir = sim.dir, + compression.type = compression, wpp.year = wpp.year, + mcmc.options = list(buffer.size = 5)) + stopifnot(m$mcmc.list[[1]]$finished.iter == 10) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 10) + stopifnot(m$meta$mcmc.options$buffer.size == 5) + ncountries <- nrow(get.countries.table(m)) + if(wpp.year == 2019) + stopifnot(ncountries == 180) # in include_2019 there are 180 default countries for e0 + test.ok(test.name) + + # continue MCMC + test.name <- 'continuing MCMC' + start.test(test.name, wpp.year) + m <- continue.e0.mcmc(iter=10, output.dir=sim.dir) + stopifnot(m$mcmc.list[[1]]$finished.iter == 20) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 20) + stopifnot(!is.element(900, m$meta$regions$country_code)) # 'World' should not be included + test.ok(test.name) + + # run MCMC for an aggregation + test.name <- 'estimating MCMC for extra areas' + start.test(test.name, wpp.year) + data.dir <- file.path(find.package("bayesLife"), 'extdata') + m <- run.e0.mcmc.extra(sim.dir=sim.dir, + my.e0.file=file.path(data.dir, 'my_e0_template.txt'), burnin=0) + stopifnot(is.element(900, m$meta$regions$country_code)) # 'World' should be included + test.ok(test.name) + + # run prediction + test.name <- 'running projections' + start.test(test.name, wpp.year) + pred <- e0.predict(m, burnin=0, verbose=FALSE) + spred <- summary(pred) + stopifnot(spred$nr.traj == 20) + stopifnot(!is.element(903, pred$mcmc.set$regions$country_code)) + stopifnot(all(dim(pred$joint.male$quantiles) == dim(pred$quantiles))) + stopifnot(dim(pred$joint.male$quantiles)[3] == 17) + npred <- dim(pred$e0.matrix.reconstructed)[2] + t <- e0.trajectories.table(pred, "Australia", pi=80, both.sexes=TRUE) + stopifnot(all(dim(t) == c(30, 3))) + smpred <- summary(get.e0.jmale.prediction(pred)) + stopifnot(smpred$nr.traj == 20) + test.ok(test.name) + + # run MCMC for another aggregation + test.name <- 'running projections on extra areas' + start.test(test.name, wpp.year) + m <- run.e0.mcmc.extra(sim.dir=sim.dir, countries=903, burnin=0) + # run prediction only for the area 903 + pred <- e0.predict.extra(sim.dir=sim.dir, verbose=FALSE) + stopifnot(dim(pred$e0.matrix.reconstructed)[2] == npred+1) + stopifnot(is.element(903, pred$mcmc.set$meta$regions$country_code)) + stopifnot(!is.null(bayesTFR:::get.trajectories(pred, 903)$trajectories)) + stopifnot(all(dim(pred$joint.male$quantiles) == dim(pred$quantiles))) + stopifnot(dim(pred$joint.male$quantiles)[1] == (ncountries + 2)) + test.ok(test.name) + + test.name <- 'shifting the median' + start.test(test.name, wpp.year) + country <- 'Netherlands' + country.idx <- get.country.object(country, m$meta)$index + projs <- summary(pred, country=country)$projections + e0.median.shift(sim.dir, country=country, shift=5.3, from=2051, to=2080) + shifted.pred <- get.e0.prediction(sim.dir) + shifted.projs <- summary(shifted.pred, country=country)$projections + stopifnot(all(projs[8:13,c(1,3:dim(projs)[2])]+5.3 == shifted.projs[8:13,c(1,3:dim(projs)[2])])) + stopifnot(all(projs[c(1:7, 14:17),c(1,3:dim(projs)[2])] == shifted.projs[c(1:7, 14:17), + c(1,3:dim(projs)[2])])) + test.ok(test.name) + + test.name <- 'resetting the median' + start.test(test.name, wpp.year) + shifted.pred <- e0.median.shift(sim.dir, country=country, reset = TRUE) + shifted.projs <- summary(shifted.pred, country=country)$projections + stopifnot(all(projs[,c(1,3:dim(projs)[2])] == shifted.projs[,c(1,3:dim(projs)[2])])) + test.ok(test.name) + + test.name <- 'setting the median' + start.test(test.name, wpp.year) + expert.values <- c(90.5, 91, 93.8) + shift <- expert.values - pred$quantiles[country.idx, '0.5',2:4] # Netherlands has index 106 + mod.pred <- e0.median.set(sim.dir, country=country, values=expert.values, years=2024) + mod.projs <- summary(mod.pred, country=country)$projections + stopifnot(all(mod.projs[2:4, c(1,3:dim(projs)[2])]==projs[2:4, c(1,3:dim(projs)[2])]+shift)) + stopifnot(all(mod.projs[c(1,5:17), c(1,3:dim(projs)[2])]==projs[c(1,5:17), c(1,3:dim(projs)[2])])) + test.ok(test.name) + + test.name <- 'converting trajectories' + start.test(test.name, wpp.year) + convert.e0.trajectories(sim.dir, n=10) + test.ok(test.name) + + test.name <- 'shifting medians to WPP' + e0.shift.prediction.to.wpp(sim.dir) + e0.shift.prediction.to.wpp(sim.dir, joint.male = TRUE) + shifted.predF <- get.e0.prediction(sim.dir) + shifted.predM <- get.e0.prediction(sim.dir, joint.male = TRUE) + cntry <- 'Angola' + shifted.projsF <- summary(shifted.predF, country = cntry)$projections + shifted.projsM <- summary(shifted.predM, country = cntry)$projections + shifted.projsF <- data.table::data.table(shifted.projsF)[, year := as.integer(rownames(shifted.projsF))] + shifted.projsM <- data.table::data.table(shifted.projsM)[, year := as.integer(rownames(shifted.projsM))] + e <- new.env() + data("e0Fproj", "e0Mproj", package = paste0("wpp", wpp.year), envir = e) + wppl <- merge(data.table::melt(data.table::data.table(e$e0Fproj), id.vars = c("country_code", "name"), + variable.name = "period", value.name = "e0F"), + data.table::melt(data.table::data.table(e$e0Mproj), id.vars = c("country_code", "name"), + variable.name = "period", value.name = "e0M"), + by = c("country_code", "name", "period")) + wppl <- wppl[, year := as.integer(substr(period, 1,4)) + 3][name == cntry] + datF <- merge(wppl, shifted.projsF[, c("year", "50%"), with = FALSE], by = "year") + datM <- merge(wppl, shifted.projsM[, c("year", "50%"), with = FALSE], by = "year") + stopifnot(all.equal(datF$e0F, datF[, `50%`])) + stopifnot(all.equal(datM$e0M, datM[, `50%`])) + stopifnot(!is.null(shifted.predF$median.shift) && !is.null(shifted.predM$median.shift)) + stopifnot(length(shifted.predF$median.shift) == nrow(get.countries.table(shifted.predF)) && + length(shifted.predM$median.shift) == nrow(get.countries.table(shifted.predM)) ) + test.ok(test.name) + + test.name <- 'resetting all countries' + e0.median.reset(sim.dir) + new.predF <- get.e0.prediction(sim.dir) + new.predM <- get.e0.prediction(sim.dir, joint.male = TRUE) + stopifnot(is.null(new.predF$median.shift) && !is.null(new.predM$median.shift)) + e0.median.reset(sim.dir, joint.male = TRUE) + new.predM2 <- get.e0.prediction(sim.dir, joint.male = TRUE) + stopifnot(is.null(new.predM2$median.shift)) + test.ok(test.name) + + unlink(sim.dir, recursive=TRUE) + } > > > test.estimate.mcmc.with.suppl.data <- function(compression='None') { + sim.dir <- tempfile() + # run MCMC + test.name <- 'estimating MCMC using supplemental data' + start.test(test.name) + m <- run.e0.mcmc(nr.chains = 1, iter = 30, thin = 1, output.dir = sim.dir, + start.year = 1750, seed = 1, compression.type = compression, + mcmc.options = list(buffer.size = 10)) + stopifnot(length(m$meta$suppl.data$regions$country_code) == 29) + stopifnot(all(dim(m$meta$suppl.data$e0.matrix) == c(40, 29))) + test.ok(test.name) + + # continue MCMC + test.name <- 'continuing MCMC with supplemental data' + start.test(test.name) + m <- continue.e0.mcmc(iter=10, output.dir=sim.dir) + stopifnot(m$mcmc.list[[1]]$finished.iter == 40) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 40) + stopifnot(!is.element(900, m$meta$regions$country_code)) # 'World' should not be included + test.ok(test.name) + + # run MCMC for an aggregation + test.name <- 'estimating MCMC for extra areas with supplemental data' + start.test(test.name) + data.dir <- file.path(find.package("bayesLife"), 'extdata') + m <- run.e0.mcmc.extra(sim.dir = sim.dir, + my.e0.file = file.path(data.dir, 'my_e0_template.txt'), + burnin = 0) + stopifnot(is.element(900, m$meta$regions$country_code)) # 'World' should be included + stopifnot(m$meta$mcmc.options$buffer.size == 10) # inherited from main run + test.ok(test.name) + + # run prediction + test.name <- 'running projections for simulation with supplemental data' + start.test(test.name) + pred <- e0.predict(m, burnin=10, verbose=FALSE, save.as.ascii=0) + spred <- summary(pred) + stopifnot(spred$nr.traj == 30) + stopifnot(!is.element(903, pred$mcmc.set$regions$country_code)) + npred <- dim(pred$e0.matrix.reconstructed)[2] + test.ok(test.name) + unlink(sim.dir, recursive=TRUE) + } > > > test.existing.simulation <- function() { + test.name <- 'retrieving MCMC results' + start.test(test.name) + sim.dir <- file.path(find.package("bayesLife"), "ex-data", 'bayesLife.output') + m <- get.e0.mcmc(sim.dir, low.memory=FALSE) + stopifnot(length(m$mcmc.list)==1) + stopifnot(dim(m$mcmc.list[[1]]$traces)[1]==60) + m <- get.e0.mcmc(sim.dir) + #summary(m) + #summary(e0.mcmc(m, 1), par.names.cs=NULL) + stopifnot(bayesTFR:::get.total.iterations(m$mcmc.list) == 60) + stopifnot(bayesTFR:::get.stored.mcmc.length(m$mcmc.list, burnin=35) == 25) + test.ok(test.name) + + test.name <- 'retrieving projection results' + start.test(test.name) + pred <- get.e0.prediction(sim.dir) + s <- summary(pred, country='Japan') + stopifnot(s$nr.traj == 30) + stopifnot(all(dim(s$projections)==c(17,11))) + # comment out if thinned mcmcs are not included in the package + #mb <- get.thinned.e0.mcmc(m, thin=2, burnin=30) + #s <- summary(mb, meta.only=TRUE) + #stopifnot(s$iters == 30) + test.ok(test.name) + } > > test.DLcurve <- function() { + test.name <- 'plotting DL curves' + start.test(test.name) + sim.dir <- file.path(find.package("bayesLife"), "ex-data", 'bayesLife.output') + m <- get.e0.mcmc(sim.dir) + filename <- tempfile() + png(filename=filename) + e0.DLcurve.plot(m, 'Slovenia') + dev.off() + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + test.ok(test.name) + test.name <- 'obtaining DL curves' + start.test(test.name) + e0 <- seq(40, 90, length=100) + dl <- e0.country.dlcurves(e0, m, "Slovenia", burnin=10) + stopifnot(all(dim(dl)==c(50,100))) + # world distribution + dlw <- e0.world.dlcurves(e0, m, burnin=10) + stopifnot(all(dim(dlw)==c(50,100))) + # median of the world DL in the e0 range of 50-60 is larger than the country-specific median in that range + # check visually with: + # e0.DLcurve.plot(m, 'Slovenia'); lines(e0, apply(dlw, 2, median), col="blue") + stopifnot(all(apply(dlw[, e0 > 50 & e0 < 60], 2, median) > apply(dl[, e0 > 50 & e0 < 60], 2, median))) + test.ok(test.name) + } > > test.e0trajectories <- function() { + test.name <- 'plotting e0 trajectories' + start.test(test.name) + sim.dir <- file.path(find.package("bayesLife"), "ex-data", 'bayesLife.output') + pred <- get.e0.prediction(sim.dir=sim.dir) + filename <- tempfile() + png(filename=filename) + e0.trajectories.plot(pred, 'Australia') + dev.off() + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + test.ok(test.name) + + test.name <- 'tabulating e0 trajectories' + start.test(test.name) + t <- e0.trajectories.table(pred, "Australia", pi=c(90, 80, 70, 52)) + stopifnot(all(dim(t) == c(30, 9))) + test.ok(test.name) + } > > test.plot.all <- function() { + test.name <- 'plotting e0 trajectories and DL curves for all countries' + start.test(test.name) + sim.dir <- file.path(find.package("bayesLife"), "ex-data", 'bayesLife.output') + pred <- get.e0.prediction(sim.dir=sim.dir) + mc <- get.e0.mcmc(sim.dir) + dir <- tempfile() + dir.create(dir) + e0.trajectories.plot.all(pred, output.dir=dir, main='XXX trajs') + trajf <- length(list.files(dir, pattern='png$', full.names=FALSE)) + e0.DLcurve.plot.all(mc, output.dir=dir, main='DL XXX', output.type='jpeg') + dlf <- length(list.files(dir, pattern='jpeg$', full.names=FALSE)) + unlink(dir, recursive=TRUE) + stopifnot(trajf == get.nr.countries(mc$meta)) + stopifnot(dlf == get.nr.countries(mc$meta)) + test.ok(test.name) + } > > > test.plot.density <- function() { + test.name <- 'plotting parameter density' + start.test(test.name) + sim.dir <- file.path(find.package("bayesLife"), "ex-data", 'bayesLife.output') + pred <- get.e0.prediction(sim.dir=sim.dir) + filename <- tempfile() + png(filename=filename) + e0.pardensity.cs.plot('Ireland', pred) + dev.off() + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + test.ok(test.name) + } > > test.plot.map <- function() { + test.name <- 'creating e0 maps via rworldmap' + start.test(test.name) + sim.dir <- file.path(find.package("bayesLife"), "ex-data", 'bayesLife.output') + pred <- get.e0.prediction(sim.dir=sim.dir) + filename <- tempfile() + e0.map(pred, year=2098, device='png', device.args=list(filename=filename)) + dev.off() + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + test.ok(test.name) + + test.name <- 'creating e0 maps of observed data' + start.test(test.name) + sim.dir <- file.path(find.package("bayesLife"), "ex-data", 'bayesLife.output') + pred <- get.e0.prediction(sim.dir=sim.dir) + filename <- tempfile() + e0.map(pred, year=1974, device='png', device.args=list(filename=filename)) + dev.off() + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + test.ok(test.name) + + test.name <- 'creating parameter maps' + start.test(test.name) + sim.dir <- file.path(find.package("bayesLife"), "ex-data", 'bayesLife.output') + pred <- get.e0.prediction(sim.dir=sim.dir) + filename <- tempfile() + e0.map(pred, par.name='z.c', device='png', device.args=list(filename=filename)) + dev.off() + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + test.ok(test.name) + + test.name <- 'creating e0 maps using ggplot2' + filename <- paste0(tempfile(), ".png") + e0.ggmap(pred, file.name = filename) + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + e0.ggmap(pred, same.scale = TRUE, file.name = filename) + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + e0.ggmap(pred, same.scale = TRUE, year = 2100, file.name = filename) + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + test.ok(test.name) + } > > test.get.parameter.traces <- function() { + test.name <- 'getting parameter traces' + start.test(test.name) + sim.dir <- file.path(find.package("bayesLife"), "ex-data", 'bayesLife.output') + m <- get.e0.mcmc(sim.dir, low.memory=TRUE) + traces <- get.e0.parameter.traces(m$mcmc.list, burnin=20, + thinning.index=c(4, 21, 39)) + stopifnot(nrow(traces)==3) + m.check <- get.e0.mcmc(sim.dir, low.memory=FALSE, burnin=20) + stopifnot(traces[1,'omega']==m.check$mcmc.list[[1]]$traces[4,'omega']) + # the following is from the time when there were two chains in the example data + # indices 21 and 39 in the collapsed traces correspond to indices 1 and 19, respectively, in chain 2 + # stopifnot(all(traces[c(2,3),'omega']==m.check$mcmc.list[[2]]$traces[c(1,19),'omega'])) + + traces <- get.e0.parameter.traces(m$mcmc.list, burnin=20, thin=8) + stopifnot(nrow(traces)==5) + #stopifnot(traces[2,'z']==m.check$mcmc.list[[1]]$traces[5,'z']) #(4+1) + #stopifnot(traces[9,'z']==m.check$mcmc.list[[2]]$traces[13,'z']) #(3*4 + 1) + test.ok(test.name) + } > > test.run.mcmc.simulation.auto <- function(compression='None') { + sim.dir <- tempfile() + # run MCMC + test.name <- 'running auto MCMC' + start.test(test.name) + m <- run.e0.mcmc(iter = 'auto', output.dir = sim.dir, thin = 1, compression.type = compression, + mcmc.options = list(auto.conf = list(iter=10, iter.incr=5, max.loops=3, nr.chains=2, thin=1, burnin=5))) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 40) + test.ok(test.name) + + test.name <- 'continuing auto MCMC' + start.test(test.name) + m <- continue.e0.mcmc(iter='auto', output.dir=sim.dir, + auto.conf=list(max.loops=2)) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 60) + test.ok(test.name) + + unlink(sim.dir, recursive=TRUE) + } > > test.estimate.mcmc.with.overwrites <- function() { + sim.dir <- tempfile() + test.name <- 'estimating MCMC with country overwrites' + start.test(test.name) + overwrites <- data.frame(country_code=c(562, 686), #Niger, Senegal (index 17, 18) + k.c.prior.up=c(5, 7), + Triangle_3.c.prior.low=c(NA, 0), + Triangle_3.c.prior.up=c(0, NA) + ) + # run MCMC + m <- run.e0.mcmc(nr.chains = 1, iter = 50, thin = 1, output.dir = sim.dir, + mcmc.options = list(Triangle.c = list(prior.low =c(0, 0, -20, 0)), + country.overwrites = overwrites), + seed = 10) + iNiger <- get.country.object(562, m$meta) + iSene <- get.country.object(686, m$meta) + + stopifnot((m$meta$country.bounds$k.c.prior.up[iNiger$index] == 5) && (m$meta$country.bounds$k.c.prior.up[iSene$index] == 7) && + all(m$meta$country.bounds$k.c.prior.up[-c(iNiger$index,iSene$index)]==10)) + stopifnot((m$meta$country.bounds$Triangle_3.c.prior.low[iSene$index] == 0) && + all(m$meta$country.bounds$Triangle_3.c.prior.low[-iSene$index] == -20)) + #check traces + traces.Niger <- get.e0.parameter.traces.cs(m$mcmc.list, get.country.object('Niger', m$meta), + par.names=c('Triangle.c', 'k.c')) + stopifnot(all(traces.Niger[,'k.c_c562'] <= 5) && all(traces.Niger[,'Triangle.c_3_c562'] <= 0)) + traces.Sen <- get.e0.parameter.traces.cs(m$mcmc.list, get.country.object('Senegal', m$meta), + par.names=c('Triangle.c', 'k.c')) + stopifnot(all(traces.Sen[,'k.c_c686'] < 7) && all(traces.Sen[,'Triangle.c_3_c686'] >= 0)) + test.ok(test.name) + + test.name <- 'estimating MCMC for extra countries with country overwrites' + start.test(test.name) + overwrites <- data.frame(country_code = c(800, 900), #Uganda, World + k.c.prior.up = c(3, 8), + k.c.prior.low = c(2, NA)) + m <- run.e0.mcmc.extra(sim.dir = sim.dir, countries = c(800, 900), burnin = 0, + country.overwrites = overwrites) + Ug <- get.country.object('Uganda', m$meta) + Wrld <- get.country.object(900, m$meta) + stopifnot((m$meta$country.bounds$k.c.prior.up[Ug$index] == 3) && (m$meta$country.bounds$k.c.prior.up[iSene$index] == 7) && + (m$meta$country.bounds$k.c.prior.up[Wrld$index] == 8) && all(m$meta$country.bounds$k.c.prior.up[-c(iNiger$index, iSene$index, Ug$index,Wrld$index)]==10)) + stopifnot((m$meta$country.bounds$k.c.prior.low[Ug$index] == 2) && all(m$meta$country.bounds$k.c.prior.low[-Ug$index]==0)) + traces.Ug <- get.e0.parameter.traces.cs(m$mcmc.list, Ug, par.names=c('k.c')) + stopifnot(all(traces.Ug[,'k.c_c800'] <= 3) && all(traces.Ug[,'k.c_c800'] > 2)) + traces.world <- get.e0.parameter.traces.cs(m$mcmc.list, Wrld, par.names=c('k.c')) + stopifnot(all(traces.world[,'k.c_c900'] <= 8)) + test.ok(test.name) + unlink(sim.dir, recursive=TRUE) + } > > test.run.mcmc.simulation.auto.parallel <- function() { + sim.dir <- tempfile() + # run MCMC + test.name <- 'running auto MCMC in parallel' + start.test(test.name) + m <- run.e0.mcmc(iter='auto', output.dir=sim.dir, parallel=TRUE, cltype='SOCK', thin=1, + mcmc.options = list(auto.conf=list(iter=10, iter.incr=5, max.loops=3, nr.chains=2, thin=1, burnin=5))) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 40) + test.ok(test.name) + + test.name <- 'continuing auto MCMC in parallel' + start.test(test.name) + m <- continue.e0.mcmc(iter='auto', output.dir=sim.dir, + auto.conf=list(max.loops=2), + parallel=TRUE, cltype='SOCK') + stopifnot(get.total.iterations(m$mcmc.list, 0) == 60) + test.ok(test.name) + unlink(sim.dir, recursive=TRUE) + } > > test.imputation <- function() { + sim.dir <- tempfile() + + # run MCMC + test.name <- 'running MCMC with missing values' + start.test(test.name) + my.e0.data <- data.frame(country_code=4, last.observed=1990) + my.e0.file <- tempfile() + write.table(my.e0.data, my.e0.file, sep='\t', row.names=FALSE) + m <- run.e0.mcmc(iter=5, nr.chains=1, output.dir=sim.dir, my.e0.file=my.e0.file, thin=1) + unlink(my.e0.file) + cindex <- get.country.object(4, m$meta)$index + stopifnot(m$mcmc.list[[1]]$finished.iter == 5) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 5) + stopifnot(length(m$meta$Tc.index[[cindex]]) == 8) + test.name <- 'running projections with imputation' + start.test(test.name) + pred <- e0.predict(m, burnin=0, verbose=FALSE) + stopifnot(length(pred$joint.male$meta.changes$Tc.index[[cindex]])==14) + spred <- summary(pred) + stopifnot(spred$nr.traj == 5) + test.ok(test.name) + + test.name <- 'plotting imputed e0 trajectories' + start.test(test.name) + filename <- tempfile() + png(filename=filename) + e0.trajectories.plot(pred, 4, pi=c(90, 54)) + e0.trajectories.plot(pred, 4, pi=c(90, 54), both.sexes=TRUE) + dev.off() + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + test.ok(test.name) + + test.name <- 'running projections with male imputation' + start.test(test.name) + my.e0.data <- data.frame(country_code=4, last.observed=1979) + my.e0.file <- tempfile() + write.table(my.e0.data, my.e0.file, sep='\t', row.names=FALSE) + pred <- e0.predict(m, burnin=0, my.e0.file=my.e0.file, verbose=FALSE, replace.output=TRUE) + unlink(my.e0.file) + stopifnot(length(pred$joint.male$meta.changes$Tc.index[[cindex]])==6) + spred <- summary(pred) + stopifnot(spred$nr.traj == 5) + test.ok(test.name) + + test.name <- 'plotting imputed F&M e0 trajectories' + start.test(test.name) + filename <- tempfile() + png(filename=filename) + e0.trajectories.plot(pred, 4, pi=c(90, 54), both.sexes=TRUE) + dev.off() + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + test.ok(test.name) + + test.name <- 'running MCMC and prediction with missing values for extra country' + start.test(test.name) + my.e0.data <- data.frame(country_code=900, last.observed=1996) + my.e0.file <- tempfile() + write.table(my.e0.data, my.e0.file, sep='\t', row.names=FALSE) + m <- run.e0.mcmc.extra(sim.dir=sim.dir, countries=900, my.e0.file=my.e0.file, burnin=0) + my.e0M.data <- data.frame(country_code=900, last.observed=1989) + write.table(my.e0M.data, my.e0.file, sep='\t', row.names=FALSE) + pred <- e0.predict.extra(sim.dir, my.e0.file=my.e0.file, verbose=FALSE) + unlink(my.e0.file) + stopifnot(length(pred$joint.male$meta.changes$Tc.index[[cindex]])==6) + stopifnot(length(pred$joint.male$meta.changes$Tc.index[[get.country.object(900, m$meta)$index]])==8) + stopifnot(length(m$meta$Tc.index[[get.country.object(900, m$meta)$index]]) == 9) + test.ok(test.name) + + test.name <- 'plotting imputed F&M e0 trajectories for extra countries' + start.test(test.name) + filename <- tempfile() + png(filename=filename) + e0.trajectories.plot(pred, 4, pi=c(90, 54), both.sexes=TRUE) + e0.trajectories.plot(pred, 900, pi=c(90, 54), both.sexes=TRUE) + dev.off() + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + test.ok(test.name) + + unlink(sim.dir, recursive=TRUE) + } > > test.my.locations.extra <- function() { + sim.dir <- tempfile() + # run MCMC + test.name <- 'using my.locations.file in extra estimation' + start.test(test.name) + m <- run.e0.mcmc(nr.chains=1, iter=10, thin=1, output.dir=sim.dir) + data.dim <- dim(m$meta$e0.matrix) + # prepare data and locations + my.e0.file <- file.path(find.package("bayesLife"), 'extdata', 'my_e0_template.txt') + e0 <- bayesTFR:::read.tfr.file(file=my.e0.file) + e0['country_code'] <- 9999 + fdata <- tempfile() + write.table(e0, file=fdata, sep='\t', row.names=FALSE) + new.locations <- data.frame(country_code=9999, name='my location', reg_code=9999, area_code=8888, reg_name='my region', area_name='my area', location_type=4) + flocs <- tempfile() + write.table(new.locations, file=flocs, sep='\t', row.names=FALSE) + m <- run.e0.mcmc.extra(sim.dir=sim.dir, my.e0.file=fdata, my.locations.file=flocs, burnin=0) + stopifnot(all(dim(m$meta$e0.matrix) == c(data.dim[1], data.dim[2]+1))) + stopifnot(m$meta$regions$country_code[m$meta$nr.countries] == 9999) + unlink(flocs) + unlink(fdata) + unlink(sim.dir, recursive=TRUE) + test.ok(test.name) + } > > test.reproduce.simulation <- function() { + sim.dir <- tempfile() + test.name <- 'reproducing simulation' + start.test(test.name) + seed <- 1234 + + m1 <- run.e0.mcmc(iter=5, nr.chains=2, thin = 1, output.dir=sim.dir, start.year=1950, seed = seed, verbose = FALSE) + res1 <- summary(m1)$results$statistics + m2 <- run.e0.mcmc(iter=5, nr.chains=2, thin = 1, output.dir=sim.dir, start.year=1950, seed = seed, replace.output = TRUE, verbose = FALSE) + res2 <- summary(m2)$results$statistics + stopifnot(all(res1 == res2)) + + m3 <- run.e0.mcmc(iter=5, nr.chains=2, thin = 1, output.dir=sim.dir, start.year=1950, replace.output = TRUE) # no seed + res3 <- summary(m3)$results$statistics + stopifnot(!all(res3 == res2)) + + # parallel + m1p <- run.e0.mcmc(iter=5, nr.chains=2, thin = 1, output.dir=sim.dir, start.year=1950, seed = seed, replace.output = TRUE, parallel = TRUE, ft_verbose = FALSE) + res1p <- summary(m1p)$results$statistics + m2p <- run.e0.mcmc(iter=5, nr.chains=2, thin = 1, output.dir=sim.dir, start.year=1950, seed = seed, replace.output = TRUE, parallel = TRUE, ft_verbose = FALSE) + res2p <- summary(m2p)$results$statistics + stopifnot(all(res1p == res2p)) + + m3p <- run.e0.mcmc(iter=5, nr.chains=2, thin = 1, output.dir=sim.dir, start.year=1950, replace.output = TRUE, parallel = TRUE, ft_verbose = TRUE) # no seed + res3p <- summary(m3p)$results$statistics + stopifnot(!all(res3p == res2p)) + + test.ok(test.name) + unlink(sim.dir, recursive=TRUE) + } > > test.subnational.predictions <- function() { + sim.dir <- tempfile() + test.name <- 'predicting subnational e0' + start.test(test.name) + + my.sub.file <- file.path(find.package("bayesLife"), 'extdata', 'subnational_e0_template.txt') + nat.dir <- file.path(find.package("bayesLife"), "ex-data", "bayesLife.output") + + # Subnational female projections for Australia and Canada; start 1 time period before national projections + preds <- e0.predict.subnat(c(36, 124), my.e0.file=my.sub.file, + sim.dir=nat.dir, output.dir=sim.dir, start.year=2018) + stopifnot(all(names(preds) %in% c("36", "124"))) + stopifnot(nrow(get.countries.table(preds[["36"]]))==8) + stopifnot(identical(preds[["124"]]$quantiles, get.rege0.prediction(sim.dir, 124)$quantiles)) + filename <- tempfile() + pdf(file=filename) + e0.trajectories.plot(preds[["36"]], "Queensland") + e0.trajectories.plot(preds[["124"]], "Quebec") + dev.off() + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + + # generate predictions with different method + preds.const <- e0.predict.subnat(c(36, 360), my.e0.file = my.sub.file, method = "shift", + sim.dir=nat.dir, output.dir=sim.dir, predict.jmale = TRUE, + my.e0M.file = my.sub.file) # using the same e0 for male just for testing purposes + stopifnot(identical(preds.const[["360"]]$quantiles, get.rege0.prediction(sim.dir, 360, method = "shift")$quantiles)) + stopifnot(!identical(preds.const[["360"]]$quantiles, preds[["360"]]$quantiles)) + + stopifnot(!has.e0.jmale.prediction(preds[["36"]])) # default AR1 prediction does not have male predictions + + prF <- get.rege0.prediction(sim.dir, 360, method = "shift") + prM1 <- get.e0.jmale.prediction(prF) + prM2 <- get.rege0.prediction(sim.dir, 360, method = "shift", joint.male = TRUE) + stopifnot(identical(prM1$quantiles, prM2$quantiles)) + stopifnot(!identical(prM1$quantiles, prF$quantiles)) + + unlink(sim.dir, recursive=TRUE) + test.ok(test.name) + + test.name <- 'predicting subnational e0 with imputation' + start.test(test.name) + sim.dir <- tempfile() + preds <- e0.predict.subnat("Canada", my.e0.file = my.sub.file, + sim.dir = nat.dir, output.dir = sim.dir, start.year = 2021) + stopifnot(all(names(preds) %in% c("124"))) + spred <- summary(preds[["124"]], "Quebec") + stopifnot(min(spred$projection.years) == 2023) + stopifnot(!has.e0.jmale.prediction(get.rege0.prediction(sim.dir, 124))) + + # generate male prediction + predCan <- e0.jmale.predict.subnat(preds[["124"]], my.e0.file = my.sub.file) + stopifnot(has.e0.jmale.prediction(get.rege0.prediction(sim.dir, 124))) + + filename <- tempfile() + pdf(file=filename) + e0.trajectories.plot(predCan, "Ontario", both.sexes = TRUE) + dev.off() + size <- file.info(filename)['size'] + unlink(filename) + stopifnot(size > 0) + + unlink(sim.dir, recursive=TRUE) + + # Subnational projections for Canada with one region (Alberta) having imputed values + sim.dir <- tempfile() + mye0 <- read.delim(my.sub.file, check.names = FALSE) + mye0[mye0$country_code == 124 & mye0$reg_code == 658, "last.observed"] <- 1999 + my.sub.file.mis <- tempfile() + write.table(mye0, file = my.sub.file.mis, row.names = FALSE, quote = FALSE, sep = "\t") + preds <- e0.predict.subnat("Canada", my.e0.file=my.sub.file.mis, + sim.dir=nat.dir, output.dir=sim.dir, start.year=2018, + predict.jmale = TRUE, my.e0M.file = my.sub.file) + obs <- preds[["124"]]$mcmc.set$meta$e0.matrix[,"658"] + recon <- preds[["124"]]$e0.matrix.reconstructed[,"658"] + stopifnot(all(is.na(obs[c("2003", "2008")]))) # observed is NA + stopifnot(all(!is.na(obs["1998"]))) # last observed non-NA + stopifnot(all(!is.na(recon[c("2003", "2008")]))) # missing values were reconstructed + unlink(sim.dir, recursive=TRUE) + unlink(my.sub.file.mis) + + # Subnational projections for all countries in the file + sim.dir <- tempfile() + preds <- e0.predict.subnat(c(36, 360, 124), my.e0.file=my.sub.file, sim.dir=nat.dir, + output.dir=sim.dir, end.year=2050) + stopifnot(length(preds) == 3) + + # Retrieve results for all countries + preds <- get.rege0.prediction(sim.dir) + stopifnot(length(preds) == 3) + t <- e0.trajectories.table(preds[["360"]], "Maluku") + stopifnot(all(dim(t) == c(21, 5))) + + # Retrieve results for one country + pred <- get.rege0.prediction(sim.dir, 124) + spred <- summary(pred, "British Columbia") + stopifnot(max(spred$projection.years) == 2048) + + # Retrieve trajectories + trajs <- get.e0.trajectories(preds[["36"]], "Victoria") + stopifnot(all(dim(trajs) == c(7, 30))) + + unlink(sim.dir, recursive=TRUE) + + # Annual subnational projections + my.sub.file.annual.F <- tempfile() + my.sub.file.annual.M <- tempfile() + # female data + datF <- data.table::fread(my.sub.file) # load the data and save only the last time period, pretending this is a single year data point + datF <- datF[, .(country_code, country_name, reg_code, name, `2013` = `2010-2015`)] + data.table::fwrite(datF, file = my.sub.file.annual.F, sep = "\t") # save it + # male data + datM <- data.table::copy(datF)[, `2013` := `2013`*0.95] + data.table::fwrite(datM, file = my.sub.file.annual.M, sep = "\t") + + sim.dir <- tempfile() + preds <- e0.predict.subnat(c(36, 124, 360), my.e0.file=my.sub.file.annual.F, sim.dir=nat.dir, + output.dir=sim.dir, start.year = 2016, # will impute 2 years + end.year=2030, annual = TRUE, + predict.jmale = TRUE, my.e0M.file = my.sub.file.annual.M) + # Retrieve trajectories + trajs <- get.e0.trajectories(preds[["124"]], "Alberta") + stopifnot(all(dim(trajs) == c(16, 30))) # from 2015 to 2030 + stopifnot(all(c(2015, 2030) %in% as.integer(rownames(trajs)))) + + pred <- get.rege0.prediction(sim.dir, 360) + spred <- summary(pred, "Papua") + stopifnot(max(spred$projection.years) == 2030) + + predM <- get.e0.jmale.prediction(pred) + t <- tfr.trajectories.table(predM, "Bali") + stopifnot(max(as.integer(rownames(t))) == 2030) + stopifnot(all(c(2015, 2024, 2029) %in% as.integer(rownames(t)))) + + unlink(sim.dir, recursive=TRUE) + unlink(my.sub.file.annual.F) + unlink(my.sub.file.annual.M) + + test.ok(test.name) + + } > > test.run.annual.simulation <- function(wpp.year = 2019) { + sim.dir <- tempfile() + + test.name <- 'running MCMC with annual data' + start.test(test.name, wpp.year) + m <- run.e0.mcmc(iter = 5, nr.chains = 2, thin = 1, output.dir = sim.dir, + annual = TRUE, present.year = 2018, wpp.year = wpp.year) + stopifnot(get.total.iterations(m$mcmc.list, 0) == 10) + stopifnot(all(1953:2018 %in% rownames(m$meta$e0.matrix))) + test.ok(test.name) + + test.name <- 'running annual MCMC for extra country' + start.test(test.name, wpp.year) + countries <- c(900, 908) + m <- run.e0.mcmc.extra(sim.dir = sim.dir, countries = countries, burnin = 0) + stopifnot(countries %in% m$meta$regions$country_code) + test.ok(test.name) + + test.name <- 'running annual projections' + start.test(test.name, wpp.year) + pred <- e0.predict(m, burnin=1, verbose = FALSE) + spred <- summary(pred) + tbl <- e0.trajectories.table(pred, "Japan") + stopifnot(spred$nr.traj == 8) + stopifnot(all(2019:2100 %in% spred$projection.years)) + stopifnot(all(c(908, 900) %in% get.countries.table(pred)$code)) + if(wpp.year > 2019) + stopifnot('1900' %in% rownames(tbl)) # checks that supplemental data is used + + mpred <- get.e0.jmale.prediction(pred) + smpred <- summary(mpred) + mtbl <- e0.trajectories.table(mpred, "Japan") + stopifnot(all(2019:2100 %in% smpred$projection.years)) + stopifnot(all(c(908, 900) %in% get.countries.table(mpred)$code)) + if(wpp.year > 2019) + stopifnot('1900' %in% rownames(mtbl)) + + test.ok(test.name) + + unlink(sim.dir, recursive=TRUE) + } > > > proc.time() user system elapsed 0.46 0.12 0.57