library(bayesLife) start.test <- function(name, wpp.year = NULL) cat('\n<=== Starting test of', name, if(!is.null(wpp.year)) paste0('(WPP ', wpp.year, ')') else '', '====\n') test.ok <- function(name) cat('\n==== Test of', name, 'OK.===>\n') test.get.wpp.data <- function(wpp.year=2010) { test.name <- 'getting WPP data' start.test(test.name, wpp.year) ncountries <- list('2008'=158, '2010'=159, '2012'=162, '2015'=178) data <- bayesLife:::get.wpp.e0.data(wpp.year=wpp.year, present.year=if(wpp.year>2012) 2015 else 2010) stopifnot(length(dim(data$e0.matrix))==2) stopifnot(ncol(data$e0.matrix)==ncountries[[as.character(wpp.year)]]) stopifnot(nrow(data$e0.matrix)==if(wpp.year>2012) 13 else 12) test.ok(test.name) } test.estimate.mcmc <- function(compression='None', wpp.year = 2019) { sim.dir <- tempfile() # run MCMC test.name <- 'estimating MCMC' start.test(test.name, wpp.year) m <- run.e0.mcmc(nr.chains = 1, iter = 10, thin = 1, output.dir = sim.dir, compression.type = compression, wpp.year = wpp.year, mcmc.options = list(buffer.size = 5)) stopifnot(m$mcmc.list[[1]]$finished.iter == 10) stopifnot(get.total.iterations(m$mcmc.list, 0) == 10) stopifnot(m$meta$mcmc.options$buffer.size == 5) ncountries <- nrow(get.countries.table(m)) if(wpp.year == 2019) stopifnot(ncountries == 180) # in include_2019 there are 180 default countries for e0 test.ok(test.name) # continue MCMC test.name <- 'continuing MCMC' start.test(test.name, wpp.year) m <- continue.e0.mcmc(iter=10, output.dir=sim.dir) stopifnot(m$mcmc.list[[1]]$finished.iter == 20) stopifnot(get.total.iterations(m$mcmc.list, 0) == 20) stopifnot(!is.element(900, m$meta$regions$country_code)) # 'World' should not be included test.ok(test.name) # run MCMC for an aggregation test.name <- 'estimating MCMC for extra areas' start.test(test.name, wpp.year) data.dir <- file.path(find.package("bayesLife"), 'extdata') m <- run.e0.mcmc.extra(sim.dir=sim.dir, my.e0.file=file.path(data.dir, 'my_e0_template.txt'), burnin=0) stopifnot(is.element(900, m$meta$regions$country_code)) # 'World' should be included test.ok(test.name) # run prediction test.name <- 'running projections' start.test(test.name, wpp.year) pred <- e0.predict(m, burnin=0, verbose=FALSE) spred <- summary(pred) stopifnot(spred$nr.traj == 20) stopifnot(!is.element(903, pred$mcmc.set$regions$country_code)) stopifnot(all(dim(pred$joint.male$quantiles) == dim(pred$quantiles))) stopifnot(dim(pred$joint.male$quantiles)[3] == 17) npred <- dim(pred$e0.matrix.reconstructed)[2] t <- e0.trajectories.table(pred, "Australia", pi=80, both.sexes=TRUE) stopifnot(all(dim(t) == c(30, 3))) smpred <- summary(get.e0.jmale.prediction(pred)) stopifnot(smpred$nr.traj == 20) test.ok(test.name) # run MCMC for another aggregation test.name <- 'running projections on extra areas' start.test(test.name, wpp.year) m <- run.e0.mcmc.extra(sim.dir=sim.dir, countries=903, burnin=0) # run prediction only for the area 903 pred <- e0.predict.extra(sim.dir=sim.dir, verbose=FALSE) stopifnot(dim(pred$e0.matrix.reconstructed)[2] == npred+1) stopifnot(is.element(903, pred$mcmc.set$meta$regions$country_code)) stopifnot(!is.null(bayesTFR:::get.trajectories(pred, 903)$trajectories)) stopifnot(all(dim(pred$joint.male$quantiles) == dim(pred$quantiles))) stopifnot(dim(pred$joint.male$quantiles)[1] == (ncountries + 2)) test.ok(test.name) test.name <- 'shifting the median' start.test(test.name, wpp.year) country <- 'Netherlands' country.idx <- get.country.object(country, m$meta)$index projs <- summary(pred, country=country)$projections e0.median.shift(sim.dir, country=country, shift=5.3, from=2051, to=2080) shifted.pred <- get.e0.prediction(sim.dir) shifted.projs <- summary(shifted.pred, country=country)$projections stopifnot(all(projs[8:13,c(1,3:dim(projs)[2])]+5.3 == shifted.projs[8:13,c(1,3:dim(projs)[2])])) stopifnot(all(projs[c(1:7, 14:17),c(1,3:dim(projs)[2])] == shifted.projs[c(1:7, 14:17), c(1,3:dim(projs)[2])])) test.ok(test.name) test.name <- 'resetting the median' start.test(test.name, wpp.year) shifted.pred <- e0.median.shift(sim.dir, country=country, reset = TRUE) shifted.projs <- summary(shifted.pred, country=country)$projections stopifnot(all(projs[,c(1,3:dim(projs)[2])] == shifted.projs[,c(1,3:dim(projs)[2])])) test.ok(test.name) test.name <- 'setting the median' start.test(test.name, wpp.year) expert.values <- c(90.5, 91, 93.8) shift <- expert.values - pred$quantiles[country.idx, '0.5',2:4] # Netherlands has index 106 mod.pred <- e0.median.set(sim.dir, country=country, values=expert.values, years=2024) mod.projs <- summary(mod.pred, country=country)$projections stopifnot(all(mod.projs[2:4, c(1,3:dim(projs)[2])]==projs[2:4, c(1,3:dim(projs)[2])]+shift)) stopifnot(all(mod.projs[c(1,5:17), c(1,3:dim(projs)[2])]==projs[c(1,5:17), c(1,3:dim(projs)[2])])) test.ok(test.name) test.name <- 'converting trajectories' start.test(test.name, wpp.year) convert.e0.trajectories(sim.dir, n=10) test.ok(test.name) test.name <- 'shifting medians to WPP' e0.shift.prediction.to.wpp(sim.dir) e0.shift.prediction.to.wpp(sim.dir, joint.male = TRUE) shifted.predF <- get.e0.prediction(sim.dir) shifted.predM <- get.e0.prediction(sim.dir, joint.male = TRUE) cntry <- 'Angola' shifted.projsF <- summary(shifted.predF, country = cntry)$projections shifted.projsM <- summary(shifted.predM, country = cntry)$projections shifted.projsF <- data.table::data.table(shifted.projsF)[, year := as.integer(rownames(shifted.projsF))] shifted.projsM <- data.table::data.table(shifted.projsM)[, year := as.integer(rownames(shifted.projsM))] e <- new.env() data("e0Fproj", "e0Mproj", package = paste0("wpp", wpp.year), envir = e) wppl <- merge(data.table::melt(data.table::data.table(e$e0Fproj), id.vars = c("country_code", "name"), variable.name = "period", value.name = "e0F"), data.table::melt(data.table::data.table(e$e0Mproj), id.vars = c("country_code", "name"), variable.name = "period", value.name = "e0M"), by = c("country_code", "name", "period")) wppl <- wppl[, year := as.integer(substr(period, 1,4)) + 3][name == cntry] datF <- merge(wppl, shifted.projsF[, c("year", "50%"), with = FALSE], by = "year") datM <- merge(wppl, shifted.projsM[, c("year", "50%"), with = FALSE], by = "year") stopifnot(all.equal(datF$e0F, datF[, `50%`])) stopifnot(all.equal(datM$e0M, datM[, `50%`])) stopifnot(!is.null(shifted.predF$median.shift) && !is.null(shifted.predM$median.shift)) stopifnot(length(shifted.predF$median.shift) == nrow(get.countries.table(shifted.predF)) && length(shifted.predM$median.shift) == nrow(get.countries.table(shifted.predM)) ) test.ok(test.name) test.name <- 'resetting all countries' e0.median.reset(sim.dir) new.predF <- get.e0.prediction(sim.dir) new.predM <- get.e0.prediction(sim.dir, joint.male = TRUE) stopifnot(is.null(new.predF$median.shift) && !is.null(new.predM$median.shift)) e0.median.reset(sim.dir, joint.male = TRUE) new.predM2 <- get.e0.prediction(sim.dir, joint.male = TRUE) stopifnot(is.null(new.predM2$median.shift)) test.ok(test.name) unlink(sim.dir, recursive=TRUE) } test.estimate.mcmc.with.suppl.data <- function(compression='None') { sim.dir <- tempfile() # run MCMC test.name <- 'estimating MCMC using supplemental data' start.test(test.name) m <- run.e0.mcmc(nr.chains = 1, iter = 30, thin = 1, output.dir = sim.dir, start.year = 1750, seed = 1, compression.type = compression, mcmc.options = list(buffer.size = 10)) stopifnot(length(m$meta$suppl.data$regions$country_code) == 29) stopifnot(all(dim(m$meta$suppl.data$e0.matrix) == c(40, 29))) test.ok(test.name) # continue MCMC test.name <- 'continuing MCMC with supplemental data' start.test(test.name) m <- continue.e0.mcmc(iter=10, output.dir=sim.dir) stopifnot(m$mcmc.list[[1]]$finished.iter == 40) stopifnot(get.total.iterations(m$mcmc.list, 0) == 40) stopifnot(!is.element(900, m$meta$regions$country_code)) # 'World' should not be included test.ok(test.name) # run MCMC for an aggregation test.name <- 'estimating MCMC for extra areas with supplemental data' start.test(test.name) data.dir <- file.path(find.package("bayesLife"), 'extdata') m <- run.e0.mcmc.extra(sim.dir = sim.dir, my.e0.file = file.path(data.dir, 'my_e0_template.txt'), burnin = 0) stopifnot(is.element(900, m$meta$regions$country_code)) # 'World' should be included stopifnot(m$meta$mcmc.options$buffer.size == 10) # inherited from main run test.ok(test.name) # run prediction test.name <- 'running projections for simulation with supplemental data' start.test(test.name) pred <- e0.predict(m, burnin=10, verbose=FALSE, save.as.ascii=0) spred <- summary(pred) stopifnot(spred$nr.traj == 30) stopifnot(!is.element(903, pred$mcmc.set$regions$country_code)) npred <- dim(pred$e0.matrix.reconstructed)[2] test.ok(test.name) unlink(sim.dir, recursive=TRUE) } test.existing.simulation <- function() { test.name <- 'retrieving MCMC results' start.test(test.name) sim.dir <- file.path(find.package("bayesLife"), "ex-data", 'bayesLife.output') m <- get.e0.mcmc(sim.dir, low.memory=FALSE) stopifnot(length(m$mcmc.list)==1) stopifnot(dim(m$mcmc.list[[1]]$traces)[1]==60) m <- get.e0.mcmc(sim.dir) #summary(m) #summary(e0.mcmc(m, 1), par.names.cs=NULL) stopifnot(bayesTFR:::get.total.iterations(m$mcmc.list) == 60) stopifnot(bayesTFR:::get.stored.mcmc.length(m$mcmc.list, burnin=35) == 25) test.ok(test.name) test.name <- 'retrieving projection results' start.test(test.name) pred <- get.e0.prediction(sim.dir) s <- summary(pred, country='Japan') stopifnot(s$nr.traj == 30) stopifnot(all(dim(s$projections)==c(17,11))) # comment out if thinned mcmcs are not included in the package #mb <- get.thinned.e0.mcmc(m, thin=2, burnin=30) #s <- summary(mb, meta.only=TRUE) #stopifnot(s$iters == 30) test.ok(test.name) } test.DLcurve <- function() { test.name <- 'plotting DL curves' start.test(test.name) sim.dir <- file.path(find.package("bayesLife"), "ex-data", 'bayesLife.output') m <- get.e0.mcmc(sim.dir) filename <- tempfile() png(filename=filename) e0.DLcurve.plot(m, 'Slovenia') dev.off() size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) test.ok(test.name) test.name <- 'obtaining DL curves' start.test(test.name) e0 <- seq(40, 90, length=100) dl <- e0.country.dlcurves(e0, m, "Slovenia", burnin=10) stopifnot(all(dim(dl)==c(50,100))) # world distribution dlw <- e0.world.dlcurves(e0, m, burnin=10) stopifnot(all(dim(dlw)==c(50,100))) # median of the world DL in the e0 range of 50-60 is larger than the country-specific median in that range # check visually with: # e0.DLcurve.plot(m, 'Slovenia'); lines(e0, apply(dlw, 2, median), col="blue") stopifnot(all(apply(dlw[, e0 > 50 & e0 < 60], 2, median) > apply(dl[, e0 > 50 & e0 < 60], 2, median))) test.ok(test.name) } test.e0trajectories <- function() { test.name <- 'plotting e0 trajectories' start.test(test.name) sim.dir <- file.path(find.package("bayesLife"), "ex-data", 'bayesLife.output') pred <- get.e0.prediction(sim.dir=sim.dir) filename <- tempfile() png(filename=filename) e0.trajectories.plot(pred, 'Australia') dev.off() size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) test.ok(test.name) test.name <- 'tabulating e0 trajectories' start.test(test.name) t <- e0.trajectories.table(pred, "Australia", pi=c(90, 80, 70, 52)) stopifnot(all(dim(t) == c(30, 9))) test.ok(test.name) } test.plot.all <- function() { test.name <- 'plotting e0 trajectories and DL curves for all countries' start.test(test.name) sim.dir <- file.path(find.package("bayesLife"), "ex-data", 'bayesLife.output') pred <- get.e0.prediction(sim.dir=sim.dir) mc <- get.e0.mcmc(sim.dir) dir <- tempfile() dir.create(dir) e0.trajectories.plot.all(pred, output.dir=dir, main='XXX trajs') trajf <- length(list.files(dir, pattern='png$', full.names=FALSE)) e0.DLcurve.plot.all(mc, output.dir=dir, main='DL XXX', output.type='jpeg') dlf <- length(list.files(dir, pattern='jpeg$', full.names=FALSE)) unlink(dir, recursive=TRUE) stopifnot(trajf == get.nr.countries(mc$meta)) stopifnot(dlf == get.nr.countries(mc$meta)) test.ok(test.name) } test.plot.density <- function() { test.name <- 'plotting parameter density' start.test(test.name) sim.dir <- file.path(find.package("bayesLife"), "ex-data", 'bayesLife.output') pred <- get.e0.prediction(sim.dir=sim.dir) filename <- tempfile() png(filename=filename) e0.pardensity.cs.plot('Ireland', pred) dev.off() size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) test.ok(test.name) } test.plot.map <- function() { test.name <- 'creating e0 maps via rworldmap' start.test(test.name) sim.dir <- file.path(find.package("bayesLife"), "ex-data", 'bayesLife.output') pred <- get.e0.prediction(sim.dir=sim.dir) filename <- tempfile() e0.map(pred, year=2098, device='png', device.args=list(filename=filename)) dev.off() size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) test.ok(test.name) test.name <- 'creating e0 maps of observed data' start.test(test.name) sim.dir <- file.path(find.package("bayesLife"), "ex-data", 'bayesLife.output') pred <- get.e0.prediction(sim.dir=sim.dir) filename <- tempfile() e0.map(pred, year=1974, device='png', device.args=list(filename=filename)) dev.off() size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) test.ok(test.name) test.name <- 'creating parameter maps' start.test(test.name) sim.dir <- file.path(find.package("bayesLife"), "ex-data", 'bayesLife.output') pred <- get.e0.prediction(sim.dir=sim.dir) filename <- tempfile() e0.map(pred, par.name='z.c', device='png', device.args=list(filename=filename)) dev.off() size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) test.ok(test.name) test.name <- 'creating e0 maps using ggplot2' filename <- paste0(tempfile(), ".png") e0.ggmap(pred, file.name = filename) size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) e0.ggmap(pred, same.scale = TRUE, file.name = filename) size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) e0.ggmap(pred, same.scale = TRUE, year = 2100, file.name = filename) size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) test.ok(test.name) } test.get.parameter.traces <- function() { test.name <- 'getting parameter traces' start.test(test.name) sim.dir <- file.path(find.package("bayesLife"), "ex-data", 'bayesLife.output') m <- get.e0.mcmc(sim.dir, low.memory=TRUE) traces <- get.e0.parameter.traces(m$mcmc.list, burnin=20, thinning.index=c(4, 21, 39)) stopifnot(nrow(traces)==3) m.check <- get.e0.mcmc(sim.dir, low.memory=FALSE, burnin=20) stopifnot(traces[1,'omega']==m.check$mcmc.list[[1]]$traces[4,'omega']) # the following is from the time when there were two chains in the example data # indices 21 and 39 in the collapsed traces correspond to indices 1 and 19, respectively, in chain 2 # stopifnot(all(traces[c(2,3),'omega']==m.check$mcmc.list[[2]]$traces[c(1,19),'omega'])) traces <- get.e0.parameter.traces(m$mcmc.list, burnin=20, thin=8) stopifnot(nrow(traces)==5) #stopifnot(traces[2,'z']==m.check$mcmc.list[[1]]$traces[5,'z']) #(4+1) #stopifnot(traces[9,'z']==m.check$mcmc.list[[2]]$traces[13,'z']) #(3*4 + 1) test.ok(test.name) } test.run.mcmc.simulation.auto <- function(compression='None') { sim.dir <- tempfile() # run MCMC test.name <- 'running auto MCMC' start.test(test.name) m <- run.e0.mcmc(iter = 'auto', output.dir = sim.dir, thin = 1, compression.type = compression, mcmc.options = list(auto.conf = list(iter=10, iter.incr=5, max.loops=3, nr.chains=2, thin=1, burnin=5))) stopifnot(get.total.iterations(m$mcmc.list, 0) == 40) test.ok(test.name) test.name <- 'continuing auto MCMC' start.test(test.name) m <- continue.e0.mcmc(iter='auto', output.dir=sim.dir, auto.conf=list(max.loops=2)) stopifnot(get.total.iterations(m$mcmc.list, 0) == 60) test.ok(test.name) unlink(sim.dir, recursive=TRUE) } test.estimate.mcmc.with.overwrites <- function() { sim.dir <- tempfile() test.name <- 'estimating MCMC with country overwrites' start.test(test.name) overwrites <- data.frame(country_code=c(562, 686), #Niger, Senegal (index 17, 18) k.c.prior.up=c(5, 7), Triangle_3.c.prior.low=c(NA, 0), Triangle_3.c.prior.up=c(0, NA) ) # run MCMC m <- run.e0.mcmc(nr.chains = 1, iter = 50, thin = 1, output.dir = sim.dir, mcmc.options = list(Triangle.c = list(prior.low =c(0, 0, -20, 0)), country.overwrites = overwrites), seed = 10) iNiger <- get.country.object(562, m$meta) iSene <- get.country.object(686, m$meta) stopifnot((m$meta$country.bounds$k.c.prior.up[iNiger$index] == 5) && (m$meta$country.bounds$k.c.prior.up[iSene$index] == 7) && all(m$meta$country.bounds$k.c.prior.up[-c(iNiger$index,iSene$index)]==10)) stopifnot((m$meta$country.bounds$Triangle_3.c.prior.low[iSene$index] == 0) && all(m$meta$country.bounds$Triangle_3.c.prior.low[-iSene$index] == -20)) #check traces traces.Niger <- get.e0.parameter.traces.cs(m$mcmc.list, get.country.object('Niger', m$meta), par.names=c('Triangle.c', 'k.c')) stopifnot(all(traces.Niger[,'k.c_c562'] <= 5) && all(traces.Niger[,'Triangle.c_3_c562'] <= 0)) traces.Sen <- get.e0.parameter.traces.cs(m$mcmc.list, get.country.object('Senegal', m$meta), par.names=c('Triangle.c', 'k.c')) stopifnot(all(traces.Sen[,'k.c_c686'] < 7) && all(traces.Sen[,'Triangle.c_3_c686'] >= 0)) test.ok(test.name) test.name <- 'estimating MCMC for extra countries with country overwrites' start.test(test.name) overwrites <- data.frame(country_code = c(800, 900), #Uganda, World k.c.prior.up = c(3, 8), k.c.prior.low = c(2, NA)) m <- run.e0.mcmc.extra(sim.dir = sim.dir, countries = c(800, 900), burnin = 0, country.overwrites = overwrites) Ug <- get.country.object('Uganda', m$meta) Wrld <- get.country.object(900, m$meta) stopifnot((m$meta$country.bounds$k.c.prior.up[Ug$index] == 3) && (m$meta$country.bounds$k.c.prior.up[iSene$index] == 7) && (m$meta$country.bounds$k.c.prior.up[Wrld$index] == 8) && all(m$meta$country.bounds$k.c.prior.up[-c(iNiger$index, iSene$index, Ug$index,Wrld$index)]==10)) stopifnot((m$meta$country.bounds$k.c.prior.low[Ug$index] == 2) && all(m$meta$country.bounds$k.c.prior.low[-Ug$index]==0)) traces.Ug <- get.e0.parameter.traces.cs(m$mcmc.list, Ug, par.names=c('k.c')) stopifnot(all(traces.Ug[,'k.c_c800'] <= 3) && all(traces.Ug[,'k.c_c800'] > 2)) traces.world <- get.e0.parameter.traces.cs(m$mcmc.list, Wrld, par.names=c('k.c')) stopifnot(all(traces.world[,'k.c_c900'] <= 8)) test.ok(test.name) unlink(sim.dir, recursive=TRUE) } test.run.mcmc.simulation.auto.parallel <- function() { sim.dir <- tempfile() # run MCMC test.name <- 'running auto MCMC in parallel' start.test(test.name) m <- run.e0.mcmc(iter='auto', output.dir=sim.dir, parallel=TRUE, cltype='SOCK', thin=1, mcmc.options = list(auto.conf=list(iter=10, iter.incr=5, max.loops=3, nr.chains=2, thin=1, burnin=5))) stopifnot(get.total.iterations(m$mcmc.list, 0) == 40) test.ok(test.name) test.name <- 'continuing auto MCMC in parallel' start.test(test.name) m <- continue.e0.mcmc(iter='auto', output.dir=sim.dir, auto.conf=list(max.loops=2), parallel=TRUE, cltype='SOCK') stopifnot(get.total.iterations(m$mcmc.list, 0) == 60) test.ok(test.name) unlink(sim.dir, recursive=TRUE) } test.imputation <- function() { sim.dir <- tempfile() # run MCMC test.name <- 'running MCMC with missing values' start.test(test.name) my.e0.data <- data.frame(country_code=4, last.observed=1990) my.e0.file <- tempfile() write.table(my.e0.data, my.e0.file, sep='\t', row.names=FALSE) m <- run.e0.mcmc(iter=5, nr.chains=1, output.dir=sim.dir, my.e0.file=my.e0.file, thin=1) unlink(my.e0.file) cindex <- get.country.object(4, m$meta)$index stopifnot(m$mcmc.list[[1]]$finished.iter == 5) stopifnot(get.total.iterations(m$mcmc.list, 0) == 5) stopifnot(length(m$meta$Tc.index[[cindex]]) == 8) test.name <- 'running projections with imputation' start.test(test.name) pred <- e0.predict(m, burnin=0, verbose=FALSE) stopifnot(length(pred$joint.male$meta.changes$Tc.index[[cindex]])==14) spred <- summary(pred) stopifnot(spred$nr.traj == 5) test.ok(test.name) test.name <- 'plotting imputed e0 trajectories' start.test(test.name) filename <- tempfile() png(filename=filename) e0.trajectories.plot(pred, 4, pi=c(90, 54)) e0.trajectories.plot(pred, 4, pi=c(90, 54), both.sexes=TRUE) dev.off() size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) test.ok(test.name) test.name <- 'running projections with male imputation' start.test(test.name) my.e0.data <- data.frame(country_code=4, last.observed=1979) my.e0.file <- tempfile() write.table(my.e0.data, my.e0.file, sep='\t', row.names=FALSE) pred <- e0.predict(m, burnin=0, my.e0.file=my.e0.file, verbose=FALSE, replace.output=TRUE) unlink(my.e0.file) stopifnot(length(pred$joint.male$meta.changes$Tc.index[[cindex]])==6) spred <- summary(pred) stopifnot(spred$nr.traj == 5) test.ok(test.name) test.name <- 'plotting imputed F&M e0 trajectories' start.test(test.name) filename <- tempfile() png(filename=filename) e0.trajectories.plot(pred, 4, pi=c(90, 54), both.sexes=TRUE) dev.off() size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) test.ok(test.name) test.name <- 'running MCMC and prediction with missing values for extra country' start.test(test.name) my.e0.data <- data.frame(country_code=900, last.observed=1996) my.e0.file <- tempfile() write.table(my.e0.data, my.e0.file, sep='\t', row.names=FALSE) m <- run.e0.mcmc.extra(sim.dir=sim.dir, countries=900, my.e0.file=my.e0.file, burnin=0) my.e0M.data <- data.frame(country_code=900, last.observed=1989) write.table(my.e0M.data, my.e0.file, sep='\t', row.names=FALSE) pred <- e0.predict.extra(sim.dir, my.e0.file=my.e0.file, verbose=FALSE) unlink(my.e0.file) stopifnot(length(pred$joint.male$meta.changes$Tc.index[[cindex]])==6) stopifnot(length(pred$joint.male$meta.changes$Tc.index[[get.country.object(900, m$meta)$index]])==8) stopifnot(length(m$meta$Tc.index[[get.country.object(900, m$meta)$index]]) == 9) test.ok(test.name) test.name <- 'plotting imputed F&M e0 trajectories for extra countries' start.test(test.name) filename <- tempfile() png(filename=filename) e0.trajectories.plot(pred, 4, pi=c(90, 54), both.sexes=TRUE) e0.trajectories.plot(pred, 900, pi=c(90, 54), both.sexes=TRUE) dev.off() size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) test.ok(test.name) unlink(sim.dir, recursive=TRUE) } test.my.locations.extra <- function() { sim.dir <- tempfile() # run MCMC test.name <- 'using my.locations.file in extra estimation' start.test(test.name) m <- run.e0.mcmc(nr.chains=1, iter=10, thin=1, output.dir=sim.dir) data.dim <- dim(m$meta$e0.matrix) # prepare data and locations my.e0.file <- file.path(find.package("bayesLife"), 'extdata', 'my_e0_template.txt') e0 <- bayesTFR:::read.tfr.file(file=my.e0.file) e0['country_code'] <- 9999 fdata <- tempfile() write.table(e0, file=fdata, sep='\t', row.names=FALSE) new.locations <- data.frame(country_code=9999, name='my location', reg_code=9999, area_code=8888, reg_name='my region', area_name='my area', location_type=4) flocs <- tempfile() write.table(new.locations, file=flocs, sep='\t', row.names=FALSE) m <- run.e0.mcmc.extra(sim.dir=sim.dir, my.e0.file=fdata, my.locations.file=flocs, burnin=0) stopifnot(all(dim(m$meta$e0.matrix) == c(data.dim[1], data.dim[2]+1))) stopifnot(m$meta$regions$country_code[m$meta$nr.countries] == 9999) unlink(flocs) unlink(fdata) unlink(sim.dir, recursive=TRUE) test.ok(test.name) } test.reproduce.simulation <- function() { sim.dir <- tempfile() test.name <- 'reproducing simulation' start.test(test.name) seed <- 1234 m1 <- run.e0.mcmc(iter=5, nr.chains=2, thin = 1, output.dir=sim.dir, start.year=1950, seed = seed, verbose = FALSE) res1 <- summary(m1)$results$statistics m2 <- run.e0.mcmc(iter=5, nr.chains=2, thin = 1, output.dir=sim.dir, start.year=1950, seed = seed, replace.output = TRUE, verbose = FALSE) res2 <- summary(m2)$results$statistics stopifnot(all(res1 == res2)) m3 <- run.e0.mcmc(iter=5, nr.chains=2, thin = 1, output.dir=sim.dir, start.year=1950, replace.output = TRUE) # no seed res3 <- summary(m3)$results$statistics stopifnot(!all(res3 == res2)) # parallel m1p <- run.e0.mcmc(iter=5, nr.chains=2, thin = 1, output.dir=sim.dir, start.year=1950, seed = seed, replace.output = TRUE, parallel = TRUE, ft_verbose = FALSE) res1p <- summary(m1p)$results$statistics m2p <- run.e0.mcmc(iter=5, nr.chains=2, thin = 1, output.dir=sim.dir, start.year=1950, seed = seed, replace.output = TRUE, parallel = TRUE, ft_verbose = FALSE) res2p <- summary(m2p)$results$statistics stopifnot(all(res1p == res2p)) m3p <- run.e0.mcmc(iter=5, nr.chains=2, thin = 1, output.dir=sim.dir, start.year=1950, replace.output = TRUE, parallel = TRUE, ft_verbose = TRUE) # no seed res3p <- summary(m3p)$results$statistics stopifnot(!all(res3p == res2p)) test.ok(test.name) unlink(sim.dir, recursive=TRUE) } test.subnational.predictions <- function() { sim.dir <- tempfile() test.name <- 'predicting subnational e0' start.test(test.name) my.sub.file <- file.path(find.package("bayesLife"), 'extdata', 'subnational_e0_template.txt') nat.dir <- file.path(find.package("bayesLife"), "ex-data", "bayesLife.output") # Subnational female projections for Australia and Canada; start 1 time period before national projections preds <- e0.predict.subnat(c(36, 124), my.e0.file=my.sub.file, sim.dir=nat.dir, output.dir=sim.dir, start.year=2018) stopifnot(all(names(preds) %in% c("36", "124"))) stopifnot(nrow(get.countries.table(preds[["36"]]))==8) stopifnot(identical(preds[["124"]]$quantiles, get.rege0.prediction(sim.dir, 124)$quantiles)) filename <- tempfile() pdf(file=filename) e0.trajectories.plot(preds[["36"]], "Queensland") e0.trajectories.plot(preds[["124"]], "Quebec") dev.off() size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) # generate predictions with different method preds.const <- e0.predict.subnat(c(36, 360), my.e0.file = my.sub.file, method = "shift", sim.dir=nat.dir, output.dir=sim.dir, predict.jmale = TRUE, my.e0M.file = my.sub.file) # using the same e0 for male just for testing purposes stopifnot(identical(preds.const[["360"]]$quantiles, get.rege0.prediction(sim.dir, 360, method = "shift")$quantiles)) stopifnot(!identical(preds.const[["360"]]$quantiles, preds[["360"]]$quantiles)) stopifnot(!has.e0.jmale.prediction(preds[["36"]])) # default AR1 prediction does not have male predictions prF <- get.rege0.prediction(sim.dir, 360, method = "shift") prM1 <- get.e0.jmale.prediction(prF) prM2 <- get.rege0.prediction(sim.dir, 360, method = "shift", joint.male = TRUE) stopifnot(identical(prM1$quantiles, prM2$quantiles)) stopifnot(!identical(prM1$quantiles, prF$quantiles)) unlink(sim.dir, recursive=TRUE) test.ok(test.name) test.name <- 'predicting subnational e0 with imputation' start.test(test.name) sim.dir <- tempfile() preds <- e0.predict.subnat("Canada", my.e0.file = my.sub.file, sim.dir = nat.dir, output.dir = sim.dir, start.year = 2021) stopifnot(all(names(preds) %in% c("124"))) spred <- summary(preds[["124"]], "Quebec") stopifnot(min(spred$projection.years) == 2023) stopifnot(!has.e0.jmale.prediction(get.rege0.prediction(sim.dir, 124))) # generate male prediction predCan <- e0.jmale.predict.subnat(preds[["124"]], my.e0.file = my.sub.file) stopifnot(has.e0.jmale.prediction(get.rege0.prediction(sim.dir, 124))) filename <- tempfile() pdf(file=filename) e0.trajectories.plot(predCan, "Ontario", both.sexes = TRUE) dev.off() size <- file.info(filename)['size'] unlink(filename) stopifnot(size > 0) unlink(sim.dir, recursive=TRUE) # Subnational projections for Canada with one region (Alberta) having imputed values sim.dir <- tempfile() mye0 <- read.delim(my.sub.file, check.names = FALSE) mye0[mye0$country_code == 124 & mye0$reg_code == 658, "last.observed"] <- 1999 my.sub.file.mis <- tempfile() write.table(mye0, file = my.sub.file.mis, row.names = FALSE, quote = FALSE, sep = "\t") preds <- e0.predict.subnat("Canada", my.e0.file=my.sub.file.mis, sim.dir=nat.dir, output.dir=sim.dir, start.year=2018, predict.jmale = TRUE, my.e0M.file = my.sub.file) obs <- preds[["124"]]$mcmc.set$meta$e0.matrix[,"658"] recon <- preds[["124"]]$e0.matrix.reconstructed[,"658"] stopifnot(all(is.na(obs[c("2003", "2008")]))) # observed is NA stopifnot(all(!is.na(obs["1998"]))) # last observed non-NA stopifnot(all(!is.na(recon[c("2003", "2008")]))) # missing values were reconstructed unlink(sim.dir, recursive=TRUE) unlink(my.sub.file.mis) # Subnational projections for all countries in the file sim.dir <- tempfile() preds <- e0.predict.subnat(c(36, 360, 124), my.e0.file=my.sub.file, sim.dir=nat.dir, output.dir=sim.dir, end.year=2050) stopifnot(length(preds) == 3) # Retrieve results for all countries preds <- get.rege0.prediction(sim.dir) stopifnot(length(preds) == 3) t <- e0.trajectories.table(preds[["360"]], "Maluku") stopifnot(all(dim(t) == c(21, 5))) # Retrieve results for one country pred <- get.rege0.prediction(sim.dir, 124) spred <- summary(pred, "British Columbia") stopifnot(max(spred$projection.years) == 2048) # Retrieve trajectories trajs <- get.e0.trajectories(preds[["36"]], "Victoria") stopifnot(all(dim(trajs) == c(7, 30))) unlink(sim.dir, recursive=TRUE) # Annual subnational projections my.sub.file.annual.F <- tempfile() my.sub.file.annual.M <- tempfile() # female data datF <- data.table::fread(my.sub.file) # load the data and save only the last time period, pretending this is a single year data point datF <- datF[, .(country_code, country_name, reg_code, name, `2013` = `2010-2015`)] data.table::fwrite(datF, file = my.sub.file.annual.F, sep = "\t") # save it # male data datM <- data.table::copy(datF)[, `2013` := `2013`*0.95] data.table::fwrite(datM, file = my.sub.file.annual.M, sep = "\t") sim.dir <- tempfile() preds <- e0.predict.subnat(c(36, 124, 360), my.e0.file=my.sub.file.annual.F, sim.dir=nat.dir, output.dir=sim.dir, start.year = 2016, # will impute 2 years end.year=2030, annual = TRUE, predict.jmale = TRUE, my.e0M.file = my.sub.file.annual.M) # Retrieve trajectories trajs <- get.e0.trajectories(preds[["124"]], "Alberta") stopifnot(all(dim(trajs) == c(16, 30))) # from 2015 to 2030 stopifnot(all(c(2015, 2030) %in% as.integer(rownames(trajs)))) pred <- get.rege0.prediction(sim.dir, 360) spred <- summary(pred, "Papua") stopifnot(max(spred$projection.years) == 2030) predM <- get.e0.jmale.prediction(pred) t <- tfr.trajectories.table(predM, "Bali") stopifnot(max(as.integer(rownames(t))) == 2030) stopifnot(all(c(2015, 2024, 2029) %in% as.integer(rownames(t)))) unlink(sim.dir, recursive=TRUE) unlink(my.sub.file.annual.F) unlink(my.sub.file.annual.M) test.ok(test.name) } test.run.annual.simulation <- function(wpp.year = 2019) { sim.dir <- tempfile() test.name <- 'running MCMC with annual data' start.test(test.name, wpp.year) m <- run.e0.mcmc(iter = 5, nr.chains = 2, thin = 1, output.dir = sim.dir, annual = TRUE, present.year = 2018, wpp.year = wpp.year) stopifnot(get.total.iterations(m$mcmc.list, 0) == 10) stopifnot(all(1953:2018 %in% rownames(m$meta$e0.matrix))) test.ok(test.name) test.name <- 'running annual MCMC for extra country' start.test(test.name, wpp.year) countries <- c(900, 908) m <- run.e0.mcmc.extra(sim.dir = sim.dir, countries = countries, burnin = 0) stopifnot(countries %in% m$meta$regions$country_code) test.ok(test.name) test.name <- 'running annual projections' start.test(test.name, wpp.year) pred <- e0.predict(m, burnin=1, verbose = FALSE) spred <- summary(pred) tbl <- e0.trajectories.table(pred, "Japan") stopifnot(spred$nr.traj == 8) stopifnot(all(2019:2100 %in% spred$projection.years)) stopifnot(all(c(908, 900) %in% get.countries.table(pred)$code)) if(wpp.year > 2019) stopifnot('1900' %in% rownames(tbl)) # checks that supplemental data is used mpred <- get.e0.jmale.prediction(pred) smpred <- summary(mpred) mtbl <- e0.trajectories.table(mpred, "Japan") stopifnot(all(2019:2100 %in% smpred$projection.years)) stopifnot(all(c(908, 900) %in% get.countries.table(mpred)$code)) if(wpp.year > 2019) stopifnot('1900' %in% rownames(mtbl)) test.ok(test.name) unlink(sim.dir, recursive=TRUE) }