test_that("log-like with p = 1", { n = 25; p = 1 df = data.frame(y = rnorm(n), x = rnorm(n)) bark.ok = bark(y ~ ., data=df, classification = FALSE, nburn = 10, nkeep = 100, keepevery = 10, printevery = 10^10) y = df$y x = as.matrix(df$x, ncol=1) theta = bark.ok$theta.last fullXX = bark:::getfulldesign(x,x,theta) llike_new = bark:::llike(y, x, theta, classification = FALSE, fullXX = NULL) llike_old = bark:::llike_old(y, x, theta, classification = FALSE, fullXX = NULL) llike_inC = bark:::llike_C(y, x, theta, classification = FALSE, fullXX = fullXX) expect_equal(llike_new, llike_old) }) test_that("log-like with p = 1", { n = 25; df = data.frame(sim_Friedman1(n)); bark.ok = bark(y ~ ., data=df, classification = FALSE, nburn = 10, nkeep = 100, keepevery = 10, printevery = 10^10) y = df$y x = as.matrix(df[,-11]) theta = bark.ok$theta.last fullXX = bark:::getfulldesign(x,x,theta) llike_new = bark:::llike(y, x, theta, classification = FALSE, fullXX = NULL) llike_old = bark:::llike_old(y, x, theta, classification = FALSE, fullXX = NULL) expect_equal(llike_new, llike_old) })