data(sesamesim) regr <- lm(postnumb ~ prenumb + funumb + peabody, sesamesim) # UNSTANDARDIZED REGRESSION USING AN LM OBJECT set.seed(100) z<-bain(regr,"pre=fu=pea;pea > fu > pre; pre>fu>pea", standardize = FALSE) # UNSTANDARDIZED REGRESSION USING BAIN DEFAULT samp <- dim(sesamesim)[1] regr <- lm(postnumb ~ prenumb + funumb + peabody, data = sesamesim) est <- coef(regr)[-1] cov <- vcov(regr)[-1, -1] names(est) <- c("pre", "fu", "pea") set.seed(100) y<-bain(est,"pre=fu=pea;pea > fu > pre; pre>fu>pea",n=samp,Sigma=cov,group_parameters=0,joint_parameters = 3) # HIERBOVEN VIA JOINT ZONDER LIST - HIERONDER VIA GROUP EN LIST cov <- list(cov) set.seed(100) y2<-bain(est,"pre=fu=pea;pea > fu > pre; pre>fu>pea",n=samp,Sigma=cov,group_parameters=3,joint_parameters = 0) # TESTING BAIN LM AND DEFAULT VERSUS EACH OTHER test_that("Bain mutual", {expect_equal(y$fit$Fit , z$fit$Fit)}) test_that("Bain mutual", {expect_equal(y$fit$Com , z$fit$Com)}) test_that("Bain mutual", {expect_equal(y$independent_restrictions, z$independent_restrictions)}) test_that("Bain mutual", {expect_equal(y$b, z$b)}) test_that("Bain mutual", {expect_equal(as.vector(y$posterior), as.vector(z$posterior))}) test_that("Bain mutual", {expect_equal(as.vector(y$prior), as.vector(z$prior))}) test_that("Bain mutual", {expect_equal(y$fit$BF,z$fit$BF)}) test_that("Bain mutual", {expect_equal(y$fit$PMPb , z$fit$PMPb)}) test_that("Bain mutual", {expect_equal(as.vector(t(y$BFmatrix)), as.vector(t(z$BFmatrix)))}) # TESTING BAIN REGRESSION VIA JOINT EN GROUP VERSUS EACH OTHER test_that("Bain mutual", {expect_equal(y$fit$Fit , y2$fit$Fit)}) test_that("Bain mutual", {expect_equal(y$fit$Com , y2$fit$Com)}) test_that("Bain mutual", {expect_equal(y$independent_restrictions, y2$independent_restrictions)}) test_that("Bain mutual", {expect_equal(y$b, y2$b)}) test_that("Bain mutual", {expect_equal(as.vector(y$posterior), as.vector(y2$posterior))}) test_that("Bain mutual", {expect_equal(as.vector(y$prior), as.vector(y2$prior))}) test_that("Bain mutual", {expect_equal(y$fit$BF,y2$fit$BF)}) test_that("Bain mutual", {expect_equal(y$fit$PMPb , y2$fit$PMPb)}) test_that("Bain mutual", {expect_equal(as.vector(t(y$BFmatrix)), as.vector(t(y2$BFmatrix)))}) # STANDARDIZED REGRESSION USING AN LM OBJECT regr <- lm(postnumb ~ prenumb + funumb + peabody, sesamesim) set.seed(100) sz<-bain(regr,"pre=fu=pea;pea > fu > pre; pre>fu>pea", standardize = TRUE) # STANDARDIZED REGRESSION USING BAIN DEFAULT samp <- dim(sesamesim)[1] predictors <- cbind(sesamesim$prenumb, sesamesim$funumb, sesamesim$peabody) int <- seBeta(X = predictors, y = sesamesim$postnumb, Nobs = N, estimator = "Normal") est <- int$CIs[, 2] cov <- int$cov.mat names(est) <- c("pre", "fu", "pea") set.seed(100) sy<-bain(est,"pre=fu=pea;pea > fu > pre; pre>fu>pea",n=samp,Sigma=cov,groups=0,joint_parameters = 4) # TESTING BAIN LM AND DEFAULT VERSUS EACH OTHER test_that("Bain mutual", {expect_equal(sy$fit$Fit , sz$fit$Fit)}) test_that("Bain mutual", {expect_equal(sy$fit$Com , sz$fit$Com)}) test_that("Bain mutual", {expect_equal(sy$independent_restrictions, sz$independent_restrictions)}) test_that("Bain mutual", {expect_equal(sy$b, sz$b)}) test_that("Bain mutual", {expect_equal(as.vector(sy$posterior), as.vector(sz$posterior))}) test_that("Bain mutual", {expect_equal(as.vector(sy$prior), as.vector(sz$prior))}) test_that("Bain mutual", {expect_equal(sy$fit$BF,sz$fit$BF)}) test_that("Bain mutual", {expect_equal(sy$fit$PMPb , sz$fit$PMPb)}) test_that("Bain mutual", {expect_equal(as.vector(t(sy$BFmatrix)), as.vector(t(sz$BFmatrix)))}) # REGRESSION WITH THE INTERCEPT INCLUDED IN THE RESTRICTIONS regr <- lm(postnumb ~ prenumb + peabody, sesamesim) set.seed(100) sz<-bain(regr,"Int=5 & pre > pea", standardize = FALSE) samp <- dim(sesamesim)[1] regr <- lm(postnumb ~ prenumb + peabody, data = sesamesim) est <- coef(regr) cov <- vcov(regr) names(est) <- c("i", "num","pea") set.seed(100) sy<-bain(est,"i=5 & num > pea",n=samp,Sigma=cov,groups=0,joint_parameters = 3) # TESTING BAIN LM AND DEFAULT VERSUS EACH OTHER test_that("Bain mutual", {expect_equal(sy$fit$Fit , sz$fit$Fit)}) test_that("Bain mutual", {expect_equal(sy$fit$Com , sz$fit$Com)}) test_that("Bain mutual", {expect_equal(sy$independent_restrictions, sz$independent_restrictions)}) test_that("Bain mutual", {expect_equal(sy$b, sz$b)}) test_that("Bain mutual", {expect_equal(as.vector(sy$posterior), as.vector(sz$posterior))}) test_that("Bain mutual", {expect_equal(as.vector(sy$prior), as.vector(sz$prior))}) test_that("Bain mutual", {expect_equal(sy$fit$BF,sz$fit$BF)}) test_that("Bain mutual", {expect_equal(sy$fit$PMPb , sz$fit$PMPb)}) test_that("Bain mutual", {expect_equal(as.vector(t(sy$BFmatrix)), as.vector(t(sz$BFmatrix)))}) # REGRESSION WITH RESTRICTION ON INTERACTION EFFECT samp <- dim(sesamesim)[1] regr <- lm(postnumb ~ prenumb * peabody, sesamesim) set.seed(100) sz<-bain(regr,hypothesis = "prenumb >0 ", standardize = FALSE) regr <- lm(postnumb ~ prenumb * peabody, data = sesamesim) est <- coef(regr) cov <- vcov(regr) names(est) <- c("i", "num","pea", "int") set.seed(100) sy<-bain(est,"num > 0",n=samp,Sigma=cov,groups=0,joint_parameters = 4) # TESTING BAIN LM AND DEFAULT VERSUS EACH OTHER test_that("Bain mutual", {expect_equal(sy$fit$Fit , sz$fit$Fit)}) test_that("Bain mutual", {expect_equal(sy$fit$Com , sz$fit$Com)}) test_that("Bain mutual", {expect_equal(sy$independent_restrictions, sz$independent_restrictions)}) test_that("Bain mutual", {expect_equal(sy$b, sz$b)}) test_that("Bain mutual", {expect_equal(sy$fit$BF,sz$fit$BF)}) test_that("Bain mutual", {expect_equal(sy$fit$PMPb , sz$fit$PMPb)}) test_that("Bain mutual", {expect_equal(as.vector(t(sy$BFmatrix)), as.vector(t(sz$BFmatrix)))})