context("baggr() calls with IPD version of Rubin model") library(baggr) skip_on_cran() set.seed(1990) N <- 1000 df <- data.frame( treatment = factor(sample(c("A", "B", "C"), N, replace = T), levels = c("A", "B", "C")), group = sample(paste("Study", 1:10), N, replace = T) ) df$cl <- sample(1:10, N, replace = T) df$outcome_cont <- rnorm(N) + (df$treatment == "A")*0.2 + (df$treatment == "B")*0.4 + (df$treatment == "C")*0.6 df$outcome_bin <- 1*(df$outcome_cont > 0.2) bg_n <- expect_warning(baggr(df, outcome = "outcome_cont", pooling = "none", iter = 150, refresh=0)) bg_p <- expect_warning(baggr(df, outcome = "outcome_cont", pooling = "partial", iter = 150, refresh=0)) bg_f <- expect_warning(baggr(df, outcome = "outcome_cont", pooling = "full", iter = 150, refresh=0)) bg_p <- expect_warning(baggr(df, outcome = "outcome_bin", model = "logit", pooling = "partial", iter = 150, refresh=0, cluster = "cl"))