test_that("anytime-valid p-values are more conservative than standard p-values for ANOVA models", { # Test with different precision parameters for (g_val in c(1, 2, 5)) { # Fit standard and anytime-valid ANOVA models std_fit <- aov(Sepal.Length ~ Species, data = iris) std_summary <- summary(std_fit) std_pvals <- std_summary[[1]]$`Pr(>F)`[1] # Extract the p-value for Species av_fit <- av(std_fit, g = g_val) av_summary <- summary(av_fit) av_pvals <- av_summary[[1]]$`Pr(>F)`[1] # Check if the anytime-valid p-value is greater than or equal to the standard p-value expect_gte(av_pvals, std_pvals) } }) test_that("anytime-valid methods work with increasingly complex ANOVA models", { # Test using a more complex ANOVA model complex_aov <- aov(Sepal.Length ~ Species * Petal.Width, data = iris) av_complex_aov <- av(complex_aov) expect_no_error(summary(av_complex_aov)) })