simple_x <- function() c(1, 3, 5, 7) simple_y <- function() c(2, 3, 6, 9) simple_lm_fit <- function() { x <- simple_x() y <- simple_y() lm(y ~ x) } msg_fit <- function(y = simple_y()) { message("message") x <- simple_x() lm(y ~ x) } lmer_data <- function() { data.frame( subject = rep(1:5, each = 3), time = rep(1:3, times = 5), y = c(5, 6, 7, 8, 9, 10, 4, 5, 6, 7, 8, 9, 6, 7, 8), group = rep(c("A", "B"), length.out = 15) ) } simple_lmer_fit <- function() { data <- lmer_data() suppressWarnings(suppressMessages(lme4::lmer(y ~ time + group + (1 | subject), data = data))) } surv_data <- function() { data.frame( time = c(5, 10, 15, 20, 25, 30), status = c(1, 0, 1, 1, 0, 1), group = c("A", "A", "B", "B", "A", "B") ) } simple_surv_fit <- function() { data <- surv_data() survival::survreg(survival::Surv(time, status) ~ group, data = data, dist = "exponential") } cbind_data <- function() { data.frame( trials = c(10, 10, 10, 10, 10), successes = c(4, 6, 7, 3, 5), group = factor(c("A", "A", "B", "B", "C")) ) } simple_cbind_bin_fit <- function() { data <- cbind_data() fit <- glm(cbind(successes, trials - successes) ~ group, data = data, family = binomial() ) } count_data <- function() { data.frame( y = c(1, 3, 5, 7, 9, 11), time = c(1, 2, 3, 4, 5, 6), group = c("A", "A", "B", "B", "A", "B") ) } simple_pois_fit <- function() { data <- count_data() glm(y ~ time + group, family = poisson(link = "log"), data = data) }