R Under development (unstable) (2023-12-13 r85679 ucrt) -- "Unsuffered Consequences" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > library(aster) > library(numDeriv) > > # needed because of the change in R function "sample" in R-devel > suppressWarnings(RNGversion("3.5.2")) > > set.seed(42) > > nind <- 25 > nnode <- 5 > ncoef <- nnode + 1 > > famlist <- fam.default() > fam <- c(1, 1, 2, 3, 3) > pred <- c(0, 1, 1, 2, 3) > > modmat <- array(0, c(nind, nnode, ncoef)) > modmat[ , , 1] <- 1 > for (i in 2:nnode) + modmat[ , i, i] <- 1 > modmat[ , , ncoef] <- rnorm(nind * nnode) > > beta <- rnorm(ncoef) / 10 > > theta <- matrix(modmat, ncol = ncoef) %*% beta > theta <- matrix(theta, ncol = nnode) > > root <- sample(1:3, nind * nnode, replace = TRUE) > root <- matrix(root, nind, nnode) > > x <- raster(theta, pred, fam, root) > > out <- mlogl(beta, pred, fam, x, root, modmat, deriv = 2, + type = "conditional") > > my.value <- 0 > for (j in 1:nnode) { + ifam <- fam[j] + k <- pred[j] + if (k > 0) + xpred <- x[ , k] + else + xpred <- root[ , j] + for (i in 1:nind) + my.value <- my.value - + sum(x[i, j] * theta[i, j] - + xpred[i] * famfun(famlist[[ifam]], 0, theta[i, j])) + } > all.equal(out$value, my.value) [1] TRUE > > foo <- function(beta) { + stopifnot(is.numeric(beta)) + stopifnot(is.finite(beta)) + mlogl(beta, pred, fam, x, root, modmat, type = "conditional")$value + } > > g <- grad(foo, beta) > all.equal(g, out$gradient) [1] TRUE > > h <- hessian(foo, beta) > all.equal(h, out$hessian) [1] TRUE > > ########## > > objfun <- function(beta) { + out <- mlogl(beta, pred, fam, x, root, modmat, deriv = 1, + type = "conditional") + result <- out$value + attr(result, "gradient") <- out$gradient + return(result) + } > out1 <- nlm(objfun, beta, fscale = nind) > > ########## > > objfun <- function(beta) { + out <- mlogl(beta, pred, fam, x, root, modmat, deriv = 2, + type = "conditional") + result <- out$value + attr(result, "gradient") <- out$gradient + attr(result, "hessian") <- out$hessian + return(result) + } > out <- nlm(objfun, beta, fscale = nind) > all.equal(out1$minimum, out$minimum) [1] TRUE > all.equal(out1$estimate, out$estimate, tolerance = 1e-4) [1] TRUE > > ########## expected Fisher information ########## > > aster:::setfam(fam.default()) > > fout <- .C(aster:::C_aster_fish_cond, + nind = as.integer(nind), + nnode = as.integer(nnode), + ncoef = as.integer(ncoef), + pred = as.integer(pred), + fam = as.integer(fam), + beta = as.double(out$estimate), + root = as.double(root), + x = as.double(x), + modmat = as.double(modmat), + fish = matrix(as.double(0), ncoef, ncoef)) > > mout <- mlogl(out$estimate, pred, fam, x, root, modmat, + deriv = 2, type = "conditional") > > aster:::setfam(fam.default()) > > theta <- .C(aster:::C_aster_mat_vec_mult, + nrow = as.integer(nind * nnode), + ncol = as.integer(ncoef), + a = as.double(modmat), + b = as.double(out$estimate), + c = matrix(as.double(0), nind, nnode))$c > ctau <- .C(aster:::C_aster_theta2ctau, + nind = as.integer(nind), + nnode = as.integer(nnode), + pred = as.integer(pred), + fam = as.integer(fam), + theta = as.double(theta), + ctau = matrix(as.double(0), nind, nnode))$ctau > tau <- .C(aster:::C_aster_ctau2tau, + nind = as.integer(nind), + nnode = as.integer(nnode), + pred = as.integer(pred), + fam = as.integer(fam), + root = as.double(root), + ctau = as.double(ctau), + tau = matrix(as.double(0), nind, nnode))$tau > psiDoublePrime <- .C(aster:::C_aster_theta2whatsis, + nind = as.integer(nind), + nnode = as.integer(nnode), + pred = as.integer(pred), + fam = as.integer(fam), + deriv = as.integer(2), + theta = as.double(theta), + result = matrix(as.double(0), nind, nnode))$result > > my.hessian <- theta * NaN > my.fish <- theta * NaN > > for (i in 1:nind) { + for (j in 1:nnode) { + k <- pred[j] + if (k > 0) { + my.hessian[i, j] <- x[i, k] * psiDoublePrime[i, j] + my.fish[i, j] <- tau[i, k] * psiDoublePrime[i, j] + } else { + my.hessian[i, j] <- root[i, j] * psiDoublePrime[i, j] + my.fish[i, j] <- root[i, j] * psiDoublePrime[i, j] + } + } + } > > modmat <- matrix(as.double(modmat), ncol = ncoef) > my.hessian <- as.numeric(my.hessian) > my.fish <- as.numeric(my.fish) > my.hessian <- t(modmat) %*% diag(my.hessian) %*% modmat > my.fish <- t(modmat) %*% diag(my.fish) %*% modmat > > all.equal(my.hessian, mout$hessian) [1] TRUE > all.equal(my.fish, fout$fish) [1] TRUE > > > proc.time() user system elapsed 0.28 0.04 0.31