R Under development (unstable) (2024-09-15 r87152 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > library(aster2) Loading required package: Matrix This is beta software. Unless you need to do aster models with dependence groups, use package "aster" instead. See help(aster2-package) for differences from package "aster" and examples. > > ##### Bernoulli, lower limit ##### > > theta <- seq(-3, 3, 0.1) > > cumfun <- function(theta) rep(0, length(theta)) > moofun <- cumfun > voofun <- cumfun > thoofun <- cumfun > > zeroth <- mapply(function(theta) cumulant(theta, fam.bernoulli(), + delta = -1)$zeroth, theta) > all.equal(zeroth, cumfun(theta)) [1] TRUE > > first <- mapply(function(theta) cumulant(theta, fam.bernoulli(), + delta = -1, deriv = 1)$first, theta) > all.equal(first, moofun(theta)) [1] TRUE > > second <- mapply(function(theta) cumulant(theta, fam.bernoulli(), + delta = - 1, deriv = 2)$second, theta) > all.equal(second, voofun(theta)) [1] TRUE > > third <- mapply(function(theta) cumulant(theta, fam.bernoulli(), + delta = - 1, deriv = 3)$third, theta) > all.equal(third, thoofun(theta)) [1] TRUE > > foo <- link(0, fam.bernoulli(), delta = -1, deriv = 1) > # does not matter what zeroth is, theta is not identifiable for > # degenerate model > is.finite(foo$zeroth) [1] TRUE > all.equal(0, foo$first) [1] TRUE > > ##### Bernoulli, upper limit ##### > > cumfun <- function(theta) theta > moofun <- function(theta) rep(1, length(theta)) > voofun <- function(theta) rep(0, length(theta)) > thoofun <- voofun > > zeroth <- mapply(function(theta) cumulant(theta, fam.bernoulli(), + delta = 1)$zeroth, theta) > all.equal(zeroth, cumfun(theta)) [1] TRUE > > first <- mapply(function(theta) cumulant(theta, fam.bernoulli(), + delta = 1, deriv = 1)$first, theta) > all.equal(first, moofun(theta)) [1] TRUE > > second <- mapply(function(theta) cumulant(theta, fam.bernoulli(), + delta = 1, deriv = 2)$second, theta) > all.equal(second, voofun(theta)) [1] TRUE > > third <- mapply(function(theta) cumulant(theta, fam.bernoulli(), + delta = 1, deriv = 3)$third, theta) > all.equal(third, thoofun(theta)) [1] TRUE > > foo <- link(1, fam.bernoulli(), delta = 1, deriv = 1) > # does not matter what zeroth is, theta is not identifiable for > # degenerate model > is.finite(foo$zeroth) [1] TRUE > all.equal(0, foo$first) [1] TRUE > > ##### Poisson, lower limit ##### > > theta <- seq(-3, 3, 0.1) > > cumfun <- function(theta) rep(0, length(theta)) > moofun <- cumfun > voofun <- cumfun > thoofun <- cumfun > > zeroth <- mapply(function(theta) cumulant(theta, fam.poisson(), + delta = -1)$zeroth, theta) > all.equal(zeroth, cumfun(theta)) [1] TRUE > > first <- mapply(function(theta) cumulant(theta, fam.poisson(), + delta = -1, deriv = 1)$first, theta) > all.equal(first, moofun(theta)) [1] TRUE > > second <- mapply(function(theta) cumulant(theta, fam.poisson(), + delta = - 1, deriv = 2)$second, theta) > all.equal(second, voofun(theta)) [1] TRUE > > third <- mapply(function(theta) cumulant(theta, fam.poisson(), + delta = - 1, deriv = 3)$third, theta) > all.equal(third, thoofun(theta)) [1] TRUE > > foo <- link(0, fam.poisson(), delta = -1, deriv = 1) > # does not matter what zeroth is, theta is not identifiable for > # degenerate model > is.finite(foo$zeroth) [1] TRUE > all.equal(0, foo$first) [1] TRUE > > ##### zero-truncated Poisson, lower limit ##### > > cumfun <- function(theta) theta > moofun <- function(theta) rep(1, length(theta)) > voofun <- function(theta) rep(0, length(theta)) > thoofun <- voofun > > zeroth <- mapply(function(theta) cumulant(theta, fam.zero.truncated.poisson(), + delta = -1)$zeroth, theta) > all.equal(zeroth, cumfun(theta)) [1] TRUE > > first <- mapply(function(theta) cumulant(theta, fam.zero.truncated.poisson(), + delta = -1, deriv = 1)$first, theta) > all.equal(first, moofun(theta)) [1] TRUE > > second <- mapply(function(theta) cumulant(theta, fam.zero.truncated.poisson(), + delta = -1, deriv = 2)$second, theta) > all.equal(second, voofun(theta)) [1] TRUE > > third <- mapply(function(theta) cumulant(theta, fam.zero.truncated.poisson(), + delta = -1, deriv = 3)$third, theta) > all.equal(third, thoofun(theta)) [1] TRUE > > foo <- link(1, fam.zero.truncated.poisson(), delta = -1, deriv = 1) > # does not matter what zeroth is, theta is not identifiable for > # degenerate model > is.finite(foo$zeroth) [1] TRUE > all.equal(0, foo$first) [1] TRUE > > ##### multinomial ##### > > set.seed(42) > > d <- 4 > > theta <- matrix(rnorm(d * 25), ncol = d) > > cumfun <- function(theta, delta) { + stopifnot(is.numeric(theta)) + stopifnot(is.finite(theta)) + stopifnot(length(theta) == d) + stopifnot(is.numeric(delta)) + stopifnot(is.finite(delta)) + stopifnot(length(delta) == d) + stopifnot(delta <= 0) + stopifnot(any(delta == 0)) + inies <- delta == 0 + d.too <- sum(inies) + if (d.too == 1) return(theta[inies]) + theta.too <- theta[inies] + return(cumulant(theta.too, fam.multinomial(d.too))$zeroth) + } > > moofun <- function(theta, delta) { + stopifnot(is.numeric(theta)) + stopifnot(is.finite(theta)) + stopifnot(length(theta) == d) + stopifnot(is.numeric(delta)) + stopifnot(is.finite(delta)) + stopifnot(length(delta) == d) + stopifnot(delta <= 0) + stopifnot(any(delta == 0)) + inies <- delta == 0 + d.too <- sum(inies) + if (d.too == 1) as.numeric(inies) + theta.too <- theta[inies] + foo <- cumulant(theta.too, fam.multinomial(d.too), deriv = 1)$first + bar <- rep(0, d) + bar[inies] <- foo + return(bar) + } > > voofun <- function(theta, delta) { + stopifnot(is.numeric(theta)) + stopifnot(is.finite(theta)) + stopifnot(length(theta) == d) + stopifnot(is.numeric(delta)) + stopifnot(is.finite(delta)) + stopifnot(length(delta) == d) + stopifnot(delta <= 0) + stopifnot(any(delta == 0)) + inies <- delta == 0 + d.too <- sum(inies) + if (d.too == 1) return(matrix(0, d, d)) + theta.too <- theta[inies] + foo <- cumulant(theta.too, fam.multinomial(d.too), deriv = 2)$second + bar <- matrix(0, d, d) + baz <- matrix(0, d, d.too) + baz[inies, ] <- foo + bar[ , inies] <- baz + return(bar) + } > > thoofun <- function(theta, delta) { + stopifnot(is.numeric(theta)) + stopifnot(is.finite(theta)) + stopifnot(length(theta) == d) + stopifnot(is.numeric(delta)) + stopifnot(is.finite(delta)) + stopifnot(length(delta) == d) + stopifnot(delta <= 0) + stopifnot(any(delta == 0)) + inies <- delta == 0 + d.too <- sum(inies) + if (d.too == 1) return(array(0, rep(d, 3))) + theta.too <- theta[inies] + foo <- cumulant(theta.too, fam.multinomial(d.too), deriv = 3)$third + bar <- array(0, rep(d, 3)) + baz <- array(0, c(d, d, d.too)) + qux <- array(0, c(d, d.too, d.too)) + qux[inies, , ] <- foo + baz[ , inies, ] <- qux + bar[ , , inies] <- baz + return(bar) + } > > ##### one extra degeneracy ##### > > delta <- c(0, 0, 0, -1) > > zeroth <- apply(theta, 1, function(theta) cumulant(theta, fam.multinomial(d), + delta = delta)$zeroth) > my.zeroth <- apply(theta, 1, cumfun, delta = delta) > all.equal(zeroth, my.zeroth) [1] TRUE > > first <- apply(theta, 1, function(theta) cumulant(theta, fam.multinomial(d), + delta = delta, deriv = 1)$first) > my.first <- apply(theta, 1, moofun, delta = delta) > all.equal(first, my.first) [1] TRUE > > second <- apply(theta, 1, function(theta) cumulant(theta, fam.multinomial(d), + delta = delta, deriv = 2)$second) > my.second <- apply(theta, 1, voofun, delta = delta) > all.equal(second, my.second) [1] TRUE > > third <- apply(theta, 1, function(theta) cumulant(theta, fam.multinomial(d), + delta = delta, deriv = 3)$third) > my.third <- apply(theta, 1, thoofun, delta = delta) > all.equal(third, my.third) [1] TRUE > > link(first[ , 1], fam.multinomial(d), delta = delta, deriv = 1) $zeroth [1] 0.000000 -1.801428 -1.049033 0.000000 $first [,1] [,2] [,3] [,4] [1,] 0.000000 0.000000 0.000000 0 [2,] -1.515339 9.180365 0.000000 0 [3,] -1.515339 0.000000 4.326126 0 [4,] 0.000000 0.000000 0.000000 0 > > ##### two extra degeneracies ##### > > delta <- c(0, 0, -1, -2) > > zeroth <- apply(theta, 1, function(theta) cumulant(theta, fam.multinomial(d), + delta = delta)$zeroth) > my.zeroth <- apply(theta, 1, cumfun, delta = delta) > all.equal(zeroth, my.zeroth) [1] TRUE > > first <- apply(theta, 1, function(theta) cumulant(theta, fam.multinomial(d), + delta = delta, deriv = 1)$first) > my.first <- apply(theta, 1, moofun, delta = delta) > all.equal(first, my.first) [1] TRUE > > second <- apply(theta, 1, function(theta) cumulant(theta, fam.multinomial(d), + delta = delta, deriv = 2)$second) > my.second <- apply(theta, 1, voofun, delta = delta) > all.equal(second, my.second) [1] TRUE > > third <- apply(theta, 1, function(theta) cumulant(theta, fam.multinomial(d), + delta = delta, deriv = 3)$third) > my.third <- apply(theta, 1, thoofun, delta = delta) > all.equal(third, my.third) [1] TRUE > > link(first[ , 1], fam.multinomial(d), delta = delta, deriv = 1) $zeroth [1] 0.000000 -1.801428 0.000000 0.000000 $first [,1] [,2] [,3] [,4] [1,] 0.000000 0.00000 0 0 [2,] -1.165063 7.05829 0 0 [3,] 0.000000 0.00000 0 0 [4,] 0.000000 0.00000 0 0 > > ##### fully degenerate ##### > > delta <- c(0, -0.5, -1, -2) > > zeroth <- apply(theta, 1, function(theta) cumulant(theta, fam.multinomial(d), + delta = delta)$zeroth) > my.zeroth <- apply(theta, 1, cumfun, delta = delta) > all.equal(zeroth, my.zeroth) [1] TRUE > > first <- apply(theta, 1, function(theta) cumulant(theta, fam.multinomial(d), + delta = delta, deriv = 1)$first) > my.first <- apply(theta, 1, moofun, delta = delta) > all.equal(first, my.first) [1] TRUE > > second <- apply(theta, 1, function(theta) cumulant(theta, fam.multinomial(d), + delta = delta, deriv = 2)$second) > my.second <- apply(theta, 1, voofun, delta = delta) > all.equal(second, my.second) [1] TRUE > > third <- apply(theta, 1, function(theta) cumulant(theta, fam.multinomial(d), + delta = delta, deriv = 3)$third) > my.third <- apply(theta, 1, thoofun, delta = delta) > all.equal(third, my.third) [1] TRUE > > ##### now link ##### > > linkfun <- function(xi, delta) { + stopifnot(is.numeric(xi)) + stopifnot(is.finite(xi)) + stopifnot(length(xi) == d) + stopifnot(is.numeric(delta)) + stopifnot(is.finite(delta)) + stopifnot(length(delta) == d) + stopifnot(delta <= 0) + stopifnot(any(delta == 0)) + inies <- delta == 0 + d.too <- sum(inies) + if (d.too == 1) return(rep(0, d)) + xi.too <- xi[inies] + foo <- link(xi.too, fam.multinomial(d.too))$zeroth + bar <- rep(0, d) + bar[inies] <- foo + return(bar) + } > > dlinkfun <- function(xi, delta) { + stopifnot(is.numeric(xi)) + stopifnot(is.finite(xi)) + stopifnot(length(xi) == d) + stopifnot(is.numeric(delta)) + stopifnot(is.finite(delta)) + stopifnot(length(delta) == d) + stopifnot(delta <= 0) + stopifnot(any(delta == 0)) + inies <- delta == 0 + d.too <- sum(inies) + if (d.too == 1) return(matrix(0, d, d)) + xi.too <- xi[inies] + foo <- link(xi.too, fam.multinomial(d.too), deriv = 1)$first + bar <- matrix(0, d, d) + baz <- matrix(0, d, d.too) + baz[inies, ] <- foo + bar[ , inies] <- baz + return(bar) + bar[inies] <- foo + return(bar) + } > > ##### one extra degeneracy ##### > > delta <- c(0, 0, 0, -1) > > xi <- apply(theta, 1, function(theta) cumulant(theta, fam.multinomial(d), + delta = delta, deriv = 1)$first) > xi <- t(xi) > > zeroth <- apply(xi, 1, function(xi) link(xi, fam.multinomial(d), + delta = delta)$zeroth) > my.zeroth <- apply(xi, 1, linkfun, delta = delta) > all.equal(zeroth, my.zeroth) [1] TRUE > > first <- apply(xi, 1, function(xi) link(xi, fam.multinomial(d), + delta = delta, deriv = 1)$first) > my.first <- apply(xi, 1, dlinkfun, delta = delta) > all.equal(first, my.first) [1] TRUE > > ##### two extra degeneracies ##### > > delta <- c(0, 0, -1, -2) > > xi <- apply(theta, 1, function(theta) cumulant(theta, fam.multinomial(d), + delta = delta, deriv = 1)$first) > xi <- t(xi) > > zeroth <- apply(xi, 1, function(xi) link(xi, fam.multinomial(d), + delta = delta)$zeroth) > my.zeroth <- apply(xi, 1, linkfun, delta = delta) > all.equal(zeroth, my.zeroth) [1] TRUE > > first <- apply(xi, 1, function(xi) link(xi, fam.multinomial(d), + delta = delta, deriv = 1)$first) > my.first <- apply(xi, 1, dlinkfun, delta = delta) > all.equal(first, my.first) [1] TRUE > > ##### fully degenerate ##### > > delta <- c(0, -0.5, -1, -2) > > xi <- apply(theta, 1, function(theta) cumulant(theta, fam.multinomial(d), + delta = delta, deriv = 1)$first) > xi <- t(xi) > > zeroth <- apply(xi, 1, function(xi) link(xi, fam.multinomial(d), + delta = delta)$zeroth) > my.zeroth <- apply(xi, 1, linkfun, delta = delta) > all.equal(zeroth, my.zeroth) [1] TRUE > > first <- apply(xi, 1, function(xi) link(xi, fam.multinomial(d), + delta = delta, deriv = 1)$first) > my.first <- apply(xi, 1, dlinkfun, delta = delta) > all.equal(first, my.first) [1] TRUE > > > proc.time() user system elapsed 1.81 0.14 1.93