#devtools::test("asremlPlus") context("lme4_alldiffs") cat("#### Test for predictions.frame on Oats with lme4\n") test_that("PredictionsFrame_lme4", { # skip_on_cran() library(asremlPlus) library(dae) data(Oats.dat) ## Use lmerTest and emmmeans to get predictions and associated statistics if (requireNamespace("lmerTest", quietly = TRUE) & requireNamespace("emmeans", quietly = TRUE)) { m1.lmer <- lmerTest::lmer(Yield ~ Nitrogen*Variety + (1|Blocks/Wplots), data=Oats.dat) Var.emm <- emmeans::emmeans(m1.lmer, specs = ~ Nitrogen:Variety) Var.preds <- summary(Var.emm) Var.preds <- as.predictions.frame(Var.preds, predictions = "emmean", se = "SE", interval.type = "CI", interval.names = c("lower.CL", "upper.CL")) ## Check the class and validity of the predictions.frame testthat::expect_true(is.predictions.frame(Var.preds)) testthat::expect_true(validPredictionsFrame(Var.preds)) } }) cat("#### Test for LSD.frame on Oats with lme4\n") test_that("PredictionsFrame_lme4", { # skip_on_cran() library(asremlPlus) library(dae) data(Oats.dat) ## Use lme4 and emmmeans to get predictions and associated statistics if (requireNamespace("lmerTest", quietly = TRUE) & requireNamespace("emmeans", quietly = TRUE)) { m1.lmer <- lmerTest::lmer(Yield ~ Nitrogen*Variety + (1|Blocks/Wplots), data=Oats.dat) ## Set up a wald.tab int <- as.data.frame(rbind(rep(NA,4))) rownames(int) <- "(Intercept)" wald.tab <- anova(m1.lmer, ddf = "Kenward", type = 1)[,3:6] names(wald.tab) <- names(int) <- c("Df", "denDF", "F.inc", "Pr") wald.tab <- rbind(int, wald.tab) #Get predictions Var.emm <- emmeans::emmeans(m1.lmer, specs = ~ Nitrogen:Variety) Var.preds <- summary(Var.emm) ## Modify Var.preds to be compatible with a predictions.frame Var.preds <- as.predictions.frame(Var.preds, predictions = "emmean", se = "SE", interval.type = "CI", interval.names = c("lower.CL", "upper.CL")) Var.vcov <- vcov(Var.emm) Var.sed <- NULL den.df <- wald.tab[match("Nitrogen:Variety", rownames(wald.tab)), "denDF"] testthat::expect_equal(den.df, 45) #Test for LSDs in allDifference Var.LSD.diffs <- allDifferences(predictions = Var.preds, classify = "Variety:Nitrogen", sed = Var.sed, vcov = Var.vcov, tdf = den.df, sortFactor = "Variety", decreasing = TRUE) testthat::expect_true(all(abs(Var.LSD.diffs$LSD - c(66,15.47425, 18.54065, 19.56706, 18.54065, 0.1653881,2,4)) < 1e-05)) testthat::expect_true(setequal(names(Var.LSD.diffs$LSD), c("c", "minLSD", "meanLSD", "maxLSD", "assignedLSD", "accuracyLSD", "falsePos", "falseNeg"))) testthat::expect_equal(rownames(Var.LSD.diffs$LSD), "overall") #Test for LSDby in allDifference Var.LSD.diffs <- allDifferences(predictions = Var.preds, classify = "Variety:Nitrogen", sed = Var.sed, vcov = Var.vcov, tdf = den.df, LSDtype = "factor.combinations", LSDby = "Variety", sortFactor = "Variety", decreasing = TRUE) testthat::expect_true(all(abs(Var.LSD.diffs$LSD[c("minLSD", "meanLSD", "maxLSD", "assignedLSD")] - 15.47425) < 1e-05)) testthat::expect_true(all(Var.LSD.diffs$LSD["accuracyLSD"] < 100 * .Machine$double.eps)) testthat::expect_true(setequal(names(Var.LSD.diffs$LSD), c("c", "minLSD", "meanLSD", "maxLSD", "assignedLSD", "accuracyLSD", "falsePos", "falseNeg"))) testthat::expect_true(setequal(rownames(Var.LSD.diffs$LSD), c("Marvellous", "Golden Rain", "Victory"))) #test for LSDby recalcLSD Var.LSD.diffs <- recalcLSD(Var.LSD.diffs, LSDtype = "factor.combinations", LSDby = "Variety") testthat::expect_true(is.alldiffs(Var.LSD.diffs)) testthat::expect_true(validAlldiffs(Var.LSD.diffs)) testthat::expect_true(all(abs(Var.LSD.diffs$LSD[c("minLSD", "meanLSD", "maxLSD", "assignedLSD")] - 15.47425) < 1e-05)) testthat::expect_true(all(Var.LSD.diffs$LSD["accuracyLSD"] < 100 * .Machine$double.eps)) testthat::expect_true(setequal(names(Var.LSD.diffs$LSD), c("c", "minLSD", "meanLSD", "maxLSD", "assignedLSD", "accuracyLSD", "falsePos", "falseNeg"))) testthat::expect_true(setequal(rownames(Var.LSD.diffs$LSD), c("Marvellous", "Golden Rain", "Victory"))) } }) cat("#### Test for allDifferences.data.frame on Oats with lme4\n") test_that("alldiffs_lme4", { # skip_on_cran() library(asremlPlus) library(dae) data(Oats.dat) ## Use lme4 and emmmeans to get predictions and associated statistics if (requireNamespace("lmerTest", quietly = TRUE) & requireNamespace("emmeans", quietly = TRUE)) { m1.lmer <- lmerTest::lmer(Yield ~ Nitrogen*Variety + (1|Blocks/Wplots), data=Oats.dat) ## Set up a wald.tab int <- as.data.frame(rbind(rep(NA,4))) rownames(int) <- "(Intercept)" wald.tab <- anova(m1.lmer, ddf = "Kenward", type = 1)[,3:6] names(wald.tab) <- names(int) <- c("Df", "denDF", "F.inc", "Pr") wald.tab <- rbind(int, wald.tab) #Get predictions Var.emm <- emmeans::emmeans(m1.lmer, specs = ~ Nitrogen:Variety) Var.preds <- summary(Var.emm) ## Modify Var.preds to be compatible with a predictions.frame Var.preds <- as.predictions.frame(Var.preds, predictions = "emmean", se = "SE", interval.type = "CI", interval.names = c("lower.CL", "upper.CL")) Var.vcov <- vcov(Var.emm) Var.sed <- NULL den.df <- wald.tab[match("Variety", rownames(wald.tab)), "denDF"] #Test for as.alldiffs Var.diffs <- as.alldiffs(predictions = Var.preds, sed = Var.sed, vcov = Var.vcov, classify = "Nitrogen:Variety", response = "Yield", tdf = den.df) testthat::expect_true(is.alldiffs(Var.diffs)) testthat::expect_true(validAlldiffs(Var.diffs)) testthat::expect_equal(nrow(Var.diffs$predictions),12) testthat::expect_equal(ncol(Var.diffs$predictions),8) testthat::expect_true(is.null(attr(Var.diffs, which = "sortOrder"))) testthat::expect_true(all(names(Var.diffs$predictions)[1:2] == c("Nitrogen","Variety"))) testthat::expect_true(as.character(Var.diffs$predictions$Variety[1]) == "Victory" & as.character(Var.diffs$predictions$Variety[2]) == "Victory") #Test for allDifferences Var.sort.diffs <- allDifferences(predictions = Var.preds, classify = "Variety:Nitrogen", sed = Var.sed, vcov = Var.vcov, tdf = den.df, sortFactor = "Variety", decreasing = TRUE) testthat::expect_true(is.alldiffs(Var.sort.diffs)) testthat::expect_true(validAlldiffs(Var.sort.diffs)) testthat::expect_true(as.character(Var.sort.diffs$predictions$Variety[1]) == "Marvellous" & as.character(Var.sort.diffs$predictions$Variety[2]) == "Marvellous") testthat::expect_equal(length(attr(Var.sort.diffs, which = "sortOrder")),3) testthat::expect_true(all(names(Var.sort.diffs$predictions)[1:2] == c("Variety","Nitrogen"))) ## Change the order of the factors in the alldiffs object and reorder components Var.reord.diffs <- allDifferences(predictions = Var.preds, classify = "Variety:Nitrogen", sed = Var.sed, vcov = Var.vcov, tdf = den.df) testthat::expect_true(is.alldiffs(Var.reord.diffs)) testthat::expect_true(validAlldiffs(Var.reord.diffs)) testthat::expect_true(as.character(Var.reord.diffs$predictions$Variety[1]) == "Victory" & as.character(Var.reord.diffs$predictions$Variety[2]) == "Victory") #Test for re-order factors with renewClassify Var.reord.diffs <- renewClassify(Var.diffs, newclassify = "Variety:Nitrogen") testthat::expect_true(as.character(Var.reord.diffs$predictions$Variety[1]) == "Victory" & as.character(Var.reord.diffs$predictions$Variety[2]) == "Victory") #Test for re-order factors and sort Var.both.diffs <- allDifferences(predictions = Var.preds, classify = "Variety:Nitrogen", sed = Var.sed, vcov = Var.vcov, tdf = den.df, sortFactor = "Variety", decreasing = TRUE) testthat::expect_true(as.character(Var.both.diffs$predictions$Variety[1]) == "Marvellous" & as.character(Var.both.diffs$predictions$Variety[2]) == "Marvellous") Var.both.diffs <- renewClassify(Var.diffs, newclassify = "Variety:Nitrogen", sortFactor = "Variety", decreasing = TRUE) testthat::expect_true(as.character(Var.both.diffs$predictions$Variety[1]) == "Marvellous" & as.character(Var.both.diffs$predictions$Variety[2]) == "Marvellous") } }) cat("#### Test for alldiffs validity on Oats with lme4\n") test_that("validity_lme4", { # skip_on_cran() library(asremlPlus) library(dae) data(Oats.dat) ## Use lme4 and emmmeans to get predictions and associated statistics if (requireNamespace("lmerTest", quietly = TRUE) & requireNamespace("emmeans", quietly = TRUE)) { m1.lmer <- lmerTest::lmer(Yield ~ Nitrogen*Variety + (1|Blocks/Wplots), data=Oats.dat) ## Set up a wald.tab int <- as.data.frame(rbind(rep(NA,4))) rownames(int) <- "(Intercept)" wald.tab <- anova(m1.lmer, ddf = "Kenward", type = 1)[,3:6] names(wald.tab) <- names(int) <- c("Df", "denDF", "F.inc", "Pr") wald.tab <- rbind(int, wald.tab) #Get predictions Var.emm <- emmeans::emmeans(m1.lmer, specs = ~ Nitrogen:Variety) Var.preds <- summary(Var.emm) ## Modify Var.preds to be compatible with a predictions.frame Var.preds <- as.predictions.frame(Var.preds, predictions = "emmean", se = "SE", interval.type = "CI", interval.names = c("lower.CL", "upper.CL")) Var.vcov <- vcov(Var.emm) Var.sed <- NULL den.df <- wald.tab[match("Variety", rownames(wald.tab)), "denDF"] #Test for as.alldiffs Var.diffs <- as.alldiffs(predictions = Var.preds, sed = Var.sed, vcov = Var.vcov, response = "Yield", tdf = den.df) Var.diffs$vcov <- NULL Var.diffs$predictions <- Var.diffs$predictions[, -match("est.status", names(Var.diffs$predictions))] testthat::expect_true(is.alldiffs(Var.diffs)) testthat::expect_warning(msg <- validAlldiffs(Var.diffs)) testthat::expect_equal(length(msg),5) testthat::expect_true(all(unlist(lapply(msg, nchar)) == c(41, 63, 118, 62, 119))) testthat::expect_true(grepl("Predictions.frame", msg[2], fixed = TRUE)) testthat::expect_true(grepl("classify", msg[5], fixed = TRUE)) #Test to show that variables in the classify must be in same order as in the predictions.frame Var.diffs <- as.alldiffs(predictions = Var.preds, sed = Var.sed, vcov = Var.vcov, classify = "Variety:Nitrogen", response = "Yield", tdf = den.df) testthat::expect_equal(length(attributes(Var.diffs)),6) testthat::expect_true(is.null(attr(Var.diffs, which = "sortOrder"))) testthat::expect_true(is.character(msg <- validAlldiffs(Var.diffs))) #invalid classify testthat::expect_true(grepl("classify var", msg[2], fixed = TRUE)) testthat::expect_false(all(names(Var.diffs$predictions)[1:2] == c("Variety","Nitrogen"))) } }) cat("#### Test for linTransform on WaterRunoff with lme4\n") test_that("linTransform_lme4", { # skip_on_cran() library(asremlPlus) library(dae) data("WaterRunoff.dat") ## Use lmeTest and emmmeans to get predictions and associated statistics if (requireNamespace("lmerTest", quietly = TRUE) & requireNamespace("emmeans", quietly = TRUE)) { m1.lmer <- lmerTest::lmer(pH ~ Benches + (Sources * Species) + (1|Benches:MainPlots), data=na.omit(WaterRunoff.dat)) SS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Species) SS.preds <- summary(SS.emm) den.df <- min(SS.preds$df, na.rm = TRUE) ## Modify SS.preds to be compatible with a predictions.frame SS.preds <- as.predictions.frame(SS.preds, predictions = "emmean", se = "SE", interval.type = "CI", interval.names = c("lower.CL", "upper.CL")) ## Form an all.diffs object and check its validity SS.vcov <- vcov(SS.emm) SS.diffs <- allDifferences(predictions = SS.preds, classify = "Sources:Species", vcov = SS.vcov, tdf = den.df) testthat::expect_true(validAlldiffs(SS.diffs)) #Get additive predictions diffs.sub <- linTransform(SS.diffs, classify = "Sources:Species", linear.transformation = ~ Sources + Species, Vmatrix = TRUE, tables = "none") testthat::expect_true(validAlldiffs(diffs.sub)) testthat::expect_equal(diffs.sub$predictions$predicted.value[1] - diffs.sub$predictions$predicted.value[6], diffs.sub$predictions$predicted.value[7] - diffs.sub$predictions$predicted.value[12]) #Contrast matrix for differences between each species and non-planted for the last source L <- cbind(matrix(rep(0,7*32), nrow = 7, ncol = 32), diag(1, nrow = 7), matrix(rep(-1, 7), ncol = 1)) rownames(L) <- as.character(diffs.sub$predictions$Species[33:39]) diffs.L <- linTransform(diffs.sub, classify = "Sources:Species", linear.transformation = L, tables = "predictions") testthat::expect_true(abs(diffs.L$predictions$predicted.value[1] + 0.04313837) < 1e-04) testthat::expect_true(diffs.L$predictions$Combination[1] == "S. iqscjbogxah") } }) cat("#### Test for alldiffs functions on WaterRunoff with lme4\n") test_that("alldiffs_lme4", { # skip_on_cran() library(asremlPlus) library(dae) data("WaterRunoff.dat") ## Use lmeTest and emmmeans to get predictions and associated statistics if (requireNamespace("lmerTest", quietly = TRUE) & requireNamespace("emmeans", quietly = TRUE)) { m1.lmer <- lmerTest::lmer(pH ~ Benches + (Sources * (Type + Species)) + (1|Benches:MainPlots), data=na.omit(WaterRunoff.dat)) TS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Type) TS.preds <- summary(TS.emm) den.df <- min(TS.preds$df, na.rm = TRUE) ## Modify TS.preds to be compatible with a predictions.frame TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean", se = "SE", interval.type = "CI", interval.names = c("lower.CL", "upper.CL")) ## Form an all.diffs object and check its validity TS.vcov <- vcov(TS.emm) TS.diffs <- allDifferences(predictions = TS.preds, classify = "Sources:Type", vcov = TS.vcov, tdf = den.df) testthat::expect_true(validAlldiffs(TS.diffs)) } ##Plot p-values for predictions obtained using asreml or lme4 if (exists("TS.diffs")) { ##Plot p-values based on diffs obtained from predictions using asreml or lme4 pdata <- plotPvalues(TS.diffs, gridspacing = rep(c(3,4), c(4,2)), show.sig = TRUE) testthat::expect_equal(nrow(pdata$pvalues), 400) testthat::expect_equal(ncol(pdata$pvalues), 3) testthat::expect_true(all(c("Rows","Columns","p") %in% names(pdata$pvalues))) testthat::expect_equal(sum(!is.na(pdata$pvalues$p)), 380) testthat::expect_equal(length(pdata), 2) testthat::expect_equal(length(pdata$plots), 1) pdata <- plotPvalues(TS.diffs, sections = "Sources", show.sig = TRUE, axis.labels = TRUE) testthat::expect_equal(nrow(pdata$pvalues), 400) testthat::expect_equal(ncol(pdata$pvalues), 5) testthat::expect_true(all(c("Rows","Columns","p","sections1","sections2") %in% names(pdata$pvalues))) testthat::expect_equal(sum(!is.na(pdata$pvalues$p)), 380) p <- TS.diffs$p.differences testthat::expect_silent(p <- within(reshape2::melt(p), { Var1 <- factor(Var1, levels=dimnames(TS.diffs$p.differences)[[1]]) Var2 <- factor(Var2, levels=levels(Var1)) })) names(p) <- c("Rows","Columns","p") testthat::expect_silent(plotPvalues(p, x = "Rows", y = "Columns", gridspacing = rep(c(3,4), c(4,2)), show.sig = TRUE)) ##Recalculate the LSD values for predictions obtained using asreml or lme4 TS.diffs <- recalcLSD(TS.diffs, LSDtype = "factor.combinations", LSDby = "Sources") testthat::expect_equal(nrow(TS.diffs$LSD), 6) testthat::expect_equal(ncol(TS.diffs$LSD), 8) testthat::expect_warning(TS.diffs <- redoErrorIntervals(TS.diffs, error.intervals = "halfLeast")) testthat::expect_false("upper.halfLeastSignificant.limit" %in% names(TS.diffs$predictions)) ##Use subset.alldiffs to select a subset of the alldiffs object TS.diffs.subs <- subset(TS.diffs, subset = grepl("R", Sources, fixed = TRUE) & Type %in% c("Control","Medicinal")) testthat::expect_is(TS.diffs.subs, "alldiffs") testthat::expect_true(validAlldiffs(TS.diffs.subs)) testthat::expect_equal(nrow(TS.diffs.subs$predictions),10) testthat::expect_equal(ncol(TS.diffs.subs$predictions),8) testthat::expect_false(any(TS.diffs.subs$predictions$Sources == "Tap water")) testthat::expect_false(any(TS.diffs.subs$predictions$B %in% c("Landscape","Culinary"))) testthat::expect_equal(length(attributes(TS.diffs.subs)),9) } }) cat("#### Test for exploreLSD on WaterRunoff with lme4\n") test_that("explore_lme4", { # skip_on_cran() library(asremlPlus) library(dae) data("WaterRunoff.dat") ## Use lmeTest and emmmeans to get predictions and associated statistics if (requireNamespace("lmerTest", quietly = TRUE) & requireNamespace("emmeans", quietly = TRUE)) { m1.lmer <- lmerTest::lmer(pH ~ Benches + (Sources * (Type + Species)) + (1|Benches:MainPlots), data=na.omit(WaterRunoff.dat)) TS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Type) TS.preds <- summary(TS.emm) den.df <- min(TS.preds$df, na.rm = TRUE) ## Modify TS.preds to be compatible with a predictions.frame TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean", se = "SE", interval.type = "CI", interval.names = c("lower.CL", "upper.CL")) ## Form an all.diffs object and check its validity TS.vcov <- vcov(TS.emm) TS.diffs <- allDifferences(predictions = TS.preds, classify = "Sources:Type", vcov = TS.vcov, tdf = den.df) testthat::expect_true(validAlldiffs(TS.diffs)) } ##Explore the LSDs #the values are not the same as those from asreml if (exists("TS.diffs")) { ##Explore the LSD values for predictions obtained using asreml or lmerTest LSDstat <- exploreLSDs(TS.diffs, LSDtype = "factor.combinations", LSDby = "Sources") testthat::expect_equal(names(LSDstat), c("frequencies", "distinct.vals", "statistics", "accuracy", "false.pos", "false.neg", "per.pred.accuracy", "LSD")) testthat::expect_true(all(lapply(c("frequencies", "statistics", "accuracy"), function(k, LSDstat) nrow(LSDstat[[k]]), LSDstat = LSDstat) == 6)) testthat::expect_true(all(unlist(lapply(c("frequencies", "statistics", "accuracy"), function(k, LSDstat, dat) all(rownames(LSDstat[[k]])== levels(WaterRunoff.dat$Sources)), LSDstat = LSDstat, dat = WaterRunoff.dat)))) testthat::expect_equal(names(LSDstat$frequencies), as.character(seq(0.19, 0.41, 0.02))) testthat::expect_equal(LSDstat$distinct.vals$`Rain+Basalt`, c(0.204,0.306,0.319)) testthat::expect_true(all(abs(LSDstat$statistics[1,] - c(3, 0.2049027,0.2252329,0.2557283,0.2814212, 0.3065539,0.3126769,0.3163506,0.3187998)) < 1e-05)) testthat::expect_true(all(abs(LSDstat$accuracy[1,] - c(3,0.5558598,0.4154228,0.2466349,0.2719005, 0.3315934,0.3446824,0.3522925,0.3572686)) < 1e-05)) testthat::expect_true(all(lapply(c("per.pred.accuracy", "LSD"), function(k, LSDstat) nrow(LSDstat[[k]]), LSDstat = LSDstat) == 20)) testthat::expect_equal(rownames(LSDstat$per.pred.accuracy), as.character(fac.combine(as.list(TS.diffs$predictions[c("Sources","Type")]), combine.levels = TRUE))) testthat::expect_true(all(abs(LSDstat$per.pred.accuracy[1,] - c(0.4960954,0.361053,0.1987486,0.2719005, 0.3315934,0.3446824,0.3522925,0.3572686)) < 1e-05)) } }) cat("#### Test for sort.alldiffs on Smarthouse with lme4\n") test_that("sort.alldiffs_lme4", { # skip_on_cran() library(asremlPlus) library(dae) data(Smarthouse.dat) if (requireNamespace("lmerTest", quietly = TRUE) & requireNamespace("emmeans", quietly = TRUE)) { #Analyse the first response m1.lmer <- lmerTest::lmer(y1 ~ Genotype*A*B + (1|Replicate/Mainplot), data=na.omit(Smarthouse.dat)) GAB.emm <- emmeans::emmeans(m1.lmer, specs = ~ Genotype:A:B) GAB.preds <- summary(GAB.emm) den.df <- min(GAB.preds$df, na.rm = TRUE) ## Modify GAB.preds to be compatible with a predictions.frame GAB.preds <- as.predictions.frame(GAB.preds, predictions = "emmean", se = "SE", interval.type = "CI", interval.names = c("lower.CL", "upper.CL")) ## Form an all.diffs object and check its validity GAB.vcov <- vcov(GAB.emm) GAB.diffs <- allDifferences(predictions = GAB.preds, classify = "Genotype:A:B", vcov = GAB.vcov, tdf = den.df) testthat::expect_true(is.alldiffs(GAB.diffs)) testthat::expect_true(validAlldiffs(GAB.diffs)) testthat::expect_equal(nrow(GAB.diffs$predictions),120) testthat::expect_equal(ncol(GAB.diffs$predictions),9) testthat::expect_equal(as.character(GAB.diffs$predictions$Genotype[1]),"Axe") testthat::expect_true(is.null(attr(GAB.diffs, which = "sortOrder"))) #Test reodering of the classify GAB.diffs.reord <- renewClassify(GAB.diffs, newclassify = "A:B:Genotype") testthat::expect_equal(as.character(GAB.diffs.reord$predictions$Genotype[1]),"Axe") testthat::expect_equal(as.character(GAB.diffs.reord$predictions$Genotype[2]),"Espada") testthat::expect_true(abs(GAB.diffs.reord$predictions$predicted.value[2] - -0.2265723017) < 1e-06) #Use sort.alldiffs and save order for use with other response variables GAB.diffs.sort <- sort(GAB.diffs, sortFactor = "Genotype") sort.order <- attr(GAB.diffs.sort, which = "sortOrder") testthat::expect_is(GAB.diffs.sort, "alldiffs") testthat::expect_true(validAlldiffs(GAB.diffs.sort)) testthat::expect_equal(nrow(GAB.diffs.sort$predictions),120) testthat::expect_equal(ncol(GAB.diffs.sort$predictions),9) testthat::expect_equal(as.character(GAB.diffs.sort$predictions$Genotype[1]),"Gladius") testthat::expect_equal(length(attributes(GAB.diffs.sort)),9) testthat::expect_equal(length(attr(GAB.diffs.sort, which = "sortOrder")),10) #Analyse the second response m2.lmer <- lmerTest::lmer(y2 ~ Genotype*A*B + (1|Replicate/Mainplot), data=na.omit(Smarthouse.dat)) GAB.emm <- emmeans::emmeans(m2.lmer, specs = ~ Genotype:A:B) GAB.preds <- summary(GAB.emm) den.df <- min(GAB.preds$df, na.rm = TRUE) ## Modify GAB.preds to be compatible with a predictions.frame GAB.preds <- as.predictions.frame(GAB.preds, predictions = "emmean", se = "SE", interval.type = "CI", interval.names = c("lower.CL", "upper.CL")) ## Form an all.diffs object, sorting it using the y1 sort.order and check its validity GAB.vcov <- vcov(GAB.emm) GAB.diffs2.sort <- allDifferences(predictions = GAB.preds, classify = "Genotype:A:B", vcov = GAB.vcov, tdf = den.df, sortFactor = "Genotype", sortOrder = sort.order) testthat::expect_true(validAlldiffs(GAB.diffs2.sort)) testthat::expect_equal(as.character(GAB.diffs.sort$predictions$Genotype[1]), as.character(GAB.diffs2.sort$predictions$Genotype[1])) testthat::expect_equal(attr(GAB.diffs.sort, which = "sortOrder"), attr(GAB.diffs2.sort, which = "sortOrder")) } }) cat("#### Test for sort.alldiffs on WateRunoff with lme4\n") test_that("sort.alldiffsWater_lme4", { # skip_on_cran() library(asremlPlus) library(dae) data(WaterRunoff.dat) if (requireNamespace("lmerTest", quietly = TRUE) & requireNamespace("emmeans", quietly = TRUE)) { #Analyse first response m1.lmer <- lmerTest::lmer(pH ~ Benches + (Sources * (Type + Species)) + (1|Benches:MainPlots), data=na.omit(WaterRunoff.dat)) TS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Type) TS.preds <- summary(TS.emm) den.df <- min(TS.preds$df, na.rm = TRUE) ## Modify TS.preds to be compatible with a predictions.frame TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean", se = "SE", interval.type = "CI", interval.names = c("lower.CL", "upper.CL")) ## Form an all.diffs object and check its validity TS.vcov <- vcov(TS.emm) TS.diffs <- allDifferences(predictions = TS.preds, classify = "Sources:Type", vcov = TS.vcov, tdf = den.df) testthat::expect_true(is.alldiffs(TS.diffs)) testthat::expect_true(validAlldiffs(TS.diffs)) testthat::expect_equal(nrow(TS.diffs$predictions),20) testthat::expect_equal(ncol(TS.diffs$predictions),8) testthat::expect_equal(as.character(TS.diffs$predictions$Type[1]),"Landscape") testthat::expect_true(is.null(attr(TS.diffs, which = "sortOrder"))) #Test reodering of the classify TS.diffs.reord <- renewClassify(TS.diffs, newclassify = "Type:Sources") testthat::expect_equal(as.character(TS.diffs.reord$predictions$Sources[1]),"Rainwater") testthat::expect_equal(as.character(TS.diffs.reord$predictions$Sources[2]),"Recycled water") testthat::expect_true(abs(TS.diffs.reord$predictions$predicted.value[2] - 7.646389) < 1e-06) #Test sort.alldiffs and save order for use with other response variables TS.diffs.sort <- sort(TS.diffs, sortFactor = "Sources", sortParallelToCombo = list(Type = "Control")) sort.order <- attr(TS.diffs.sort, which = "sortOrder") testthat::expect_is(TS.diffs.sort, "alldiffs") testthat::expect_true(validAlldiffs(TS.diffs.sort)) testthat::expect_equal(nrow(TS.diffs.sort$predictions),20) testthat::expect_equal(ncol(TS.diffs.sort$predictions),8) testthat::expect_equal(as.character(TS.diffs.sort$predictions$Sources[1]),"Recycled water") testthat::expect_equal(length(attributes(TS.diffs.sort)),9) testthat::expect_equal(length(attr(TS.diffs.sort, which = "sortOrder")),6) #Test sort.alldiffs with supplied sortOrder m2.lmer <- lmerTest::lmer(Turbidity ~ Benches + (Sources * (Type + Species)) + (1|Benches:MainPlots), data=na.omit(WaterRunoff.dat)) TS.emm <- emmeans::emmeans(m2.lmer, specs = ~ Sources:Type) TS.preds <- summary(TS.emm) den.df <- min(TS.preds$df, na.rm = TRUE) ## Modify TS.preds to be compatible with a predictions.frame TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean", se = "SE", interval.type = "CI", interval.names = c("lower.CL", "upper.CL")) ## Form an all.diffs object, sorting it using the pH sort.order and check its validity TS.vcov <- vcov(TS.emm) TS.diffs2.sort <- allDifferences(predictions = TS.preds, classify = "Sources:Type", vcov = TS.vcov, tdf = den.df, sortFactor = "Sources", sortOrder = sort.order) validAlldiffs(TS.diffs2.sort) testthat::expect_equal(as.character(TS.diffs.sort$predictions$Sources[1]), as.character(TS.diffs2.sort$predictions$Sources[1])) testthat::expect_equal(attr(TS.diffs.sort, which = "sortOrder"), attr(TS.diffs2.sort, which = "sortOrder")) } }) cat("#### Test for facCombine.alldiffs on Ladybird with lme4\n") test_that("facCombine.alldiffs_lme4", { # skip_on_cran() library(asremlPlus) library(dae) data("Ladybird.dat") ## Use lme4 and emmmeans to get predictions and associated statistics if (requireNamespace("lmerTest", quietly = TRUE) & requireNamespace("emmeans", quietly = TRUE)) { m1.lmer <- lmerTest::lmer(logitP ~ Host*Cadavers*Ladybird + (1|Run), data=Ladybird.dat) HCL.emm <- emmeans::emmeans(m1.lmer, specs = ~ Host:Cadavers:Ladybird) HCL.preds <- summary(HCL.emm) den.df <- min(HCL.preds$df) ## Modify HCL.preds to be compatible with a predictions.frame names(HCL.preds)[match(c("emmean", "SE", "lower.CL", "upper.CL"), names(HCL.preds))] <- c("predicted.value", "standard.error", "lower.Confidence.limit", "upper.Confidence.limit") HCL.preds$est.status <- "Estimable" HCL.preds$est.status[is.na(HCL.preds$predicted.value)] <- "Aliased" HCL.vcov <- vcov(HCL.emm) HCL.sed <- NULL } if (exists("HCL.preds")) { ## Form an all.diffs object with predictions obtained with either asreml or lmerTest HCL.diffs <- as.alldiffs(predictions = HCL.preds, classify = "Host:Cadavers:Ladybird", sed = HCL.sed, vcov = HCL.vcov, tdf = den.df) ## check the class and validity of the alldiffs object testthat::expect_true(is.alldiffs(HCL.diffs)) testthat::expect_true(validAlldiffs(HCL.diffs)) testthat::expect_equal(nrow(HCL.diffs$predictions),12) testthat::expect_equal(ncol(HCL.diffs$predictions),9) ## Combine Cadavers and Ladybird HCL.Comb.diffs <- facCombine(HCL.diffs, factors = c("Cadavers","Ladybird")) ## check the validity of HCL.Comb.diffs validAlldiffs(HCL.Comb.diffs) testthat::expect_equal(nrow(HCL.Comb.diffs$predictions),12) testthat::expect_equal(ncol(HCL.Comb.diffs$predictions),8) testthat::expect_true(all(c("Host", "Cadavers_Ladybird", "predicted.value") %in% names(HCL.Comb.diffs$predictions))) } }) cat("#### Test for as.predictions.frame on Ladybird with lme4\n") test_that("as.predictions.frame_lme4", { # skip_on_cran() library(asremlPlus) library(dae) data("Ladybird.dat") ## Use lmerTest and emmmeans to get the predictions and associated statistics if (requireNamespace("lmerTest", quietly = TRUE) & requireNamespace("emmeans", quietly = TRUE)) { m1.lmer <- lmerTest::lmer(logitP ~ Host*Cadavers*Ladybird + (1|Run), data=Ladybird.dat) HCL.emm <- emmeans::emmeans(m1.lmer, specs = ~ Host:Cadavers:Ladybird) HCL.preds <- summary(HCL.emm) den.df <- min(HCL.preds$df) ## Modify HCL.preds to be compatible with a predictions.frame HCL.preds <- as.predictions.frame(HCL.preds, predictions = "emmean", se = "SE", interval.type = "CI", interval.names = c("lower.CL", "upper.CL")) testthat::expect_true(validPredictionsFrame(HCL.preds)) testthat::expect_silent(plotPredictions(HCL.preds, y = "predicted.value", "Host:Cadavers:Ladybird")) } }) cat("#### Test for addBacktransforms on WaterRunoff with lme4\n") test_that("addBacktransforms_WaterRunoff_lme4", { skip_if_not_installed("asreml") skip_on_cran() library(asremlPlus) library(dae) data(WaterRunoff.dat) if (requireNamespace("lmerTest", quietly = TRUE) & requireNamespace("emmeans", quietly = TRUE)) { m1.lmer <- lmerTest::lmer(log.Turbidity ~ Benches + (Sources * (Type + Species)) + (1|Benches:MainPlots), data=na.omit(WaterRunoff.dat)) TS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Species) TS.preds <- summary(TS.emm) den.df <- min(TS.preds$df, na.rm = TRUE) ## Modify TS.preds to be compatible with a predictions.frame TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean", se = "SE", interval.type = "CI", interval.names = c("lower.CL", "upper.CL")) ## Form an all.diffs object and check its validity TS.vcov <- vcov(TS.emm) TS.diffs <- allDifferences(predictions = TS.preds, classify = "Sources:Species", vcov = TS.vcov, tdf = den.df) validAlldiffs(TS.diffs) } ## Plot p-values for predictions obtained using asreml or lmerTest if (exists("TS.diffs")) { ##Add the backtransforms component for predictions obtained using asreml or lmerTest TS.diffs <- addBacktransforms.alldiffs(TS.diffs, transform.power = 0) testthat::expect_false(is.null(TS.diffs$backtransforms)) testthat::expect_true(all(abs(exp(TS.diffs$predictions$predicted.value)- TS.diffs$backtransforms$backtransformed.predictions) < 1e-06)) testthat::expect_true(all(abs(exp(TS.diffs$predictions$upper.Confidence.limit)- TS.diffs$backtransforms$upper.Confidence.limit) < 1e-06)) } })