context("runLlamaModels") aggrShort = function(job, res) { return(list(succ = res$succ, par10 = res$par10, mcp = res$mcp)) } test_that("runLlamaModels", { skip_on_cran() unlink("run_llama_models", recursive = TRUE) fs = setNames(list(getFeatureStepNames(testscenario1, "instance")), testscenario1$desc$scenario_id) reg = runLlamaModels(list(testscenario1), feature.steps.list = fs, baselines = "vbs", learners = list(makeLearner("classif.rpart"), makeLearner("regr.rpart"), makeLearner("cluster.SimpleKMeans")), par.sets = list(ParamHelpers::makeParamSet(), ParamHelpers::makeParamSet(), ParamHelpers::makeParamSet()) ) submitJobs(reg = reg) waitForJobs(reg = reg) errors = getErrorMessages(reg = reg) expect_true(sum(errors$error) == 0) res = summarizeLlamaExps(reg, fun = aggrShort) expect_true(is.data.frame(res) && nrow(res) == 4L) expect_true(abs(res[1,]$par10 - 8337.099) < .1) resLong = reduceResultsList(reg = reg, ids = findDone()) expect_equal(length(resLong), 4) expect_true(is.data.frame(resLong[[2]]$predictions)) }) test_that("runLlamaModels w/ costs", { skip_on_cran() unlink("run_llama_models", recursive = TRUE) fs = setNames(list(getFeatureStepNames(testscenario2, "instance")), testscenario2$desc$scenario_id) reg = runLlamaModels(list(testscenario2), feature.steps.list = fs, baselines = "vbs", learners = list(makeLearner("classif.OneR")), par.sets = list(ParamHelpers::makeParamSet()) ) submitJobs(reg = reg) waitForJobs(reg = reg) res = summarizeLlamaExps(reg = reg, fun = aggrShort) expect_true(is.data.frame(res) && nrow(res) == 2L) expect_true(abs(res[1,]$par10 - 2221.497) < .1) # greater than without costs expect_true(res[2,]$par10 > 3274.425) })