context("convertToLlamaCVFolds") test_that("convertToLlamaCVFolds", { skip_on_cran() folds = createCVSplits(testscenario1, folds = 2L, reps = 1L) llama.scenario = convertToLlamaCVFolds(testscenario1, cv.splits = folds) lrn = makeLearner("classif.rpart") res = classify(classifier = lrn, data = llama.scenario) # FIXME: re-add when llama can handle more than 1 rep # folds = createCVSplits(testscenario1, folds = 2L, reps = 2L) # llama.scenario = convertToLlamaCVFolds(testscenario1, cv.splits = folds) # res = classify(classifier = makeLearner("classif.rpart"), data = llama.scenario) }) test_that("convertToLlamaCVFolds check matching", { folds = createCVSplits(testscenario1, folds = 2L, reps = 1L) llama.scenario = convertToLlamaCVFolds(testscenario1, cv.splits = folds) for (i in unique(folds$fold)) { iid1 = as.character(llama.scenario$data[llama.scenario$test[[i]],]$instance_id) iid2 = as.character(subset(folds, folds$fold == i)$instance_id) expect_true(setequal(iid1, iid2)) } folds = createCVSplits(testscenario6, folds = 2L, reps = 1L) llama.scenario = convertToLlamaCVFolds(testscenario6, cv.splits = folds) for (i in unique(folds$fold)) { iid1 = as.character(llama.scenario$data[llama.scenario$test[[i]],]$instance_id) iid2 = as.character(subset(folds, folds$fold == i)$instance_id) expect_true(setequal(iid1, iid2)) } })