library("arules") library("testthat") context("interestMeasures") options(digits = 2) data <- list(c("A", "B"), c("A", "B", "C", "G"), c("C", "D"), c("C", "D"), c("E", "F")) trans <- transactions(data) ################################################################## # Test the original example from # Edward R. Omiecinski. Alternative interest measures for mining # associations in databases. IEEE Transactions on Knowledge and # Data Engineering, 15(1):57-69, Jan/Feb 2003. # complains about low support fsets <- eclat( trans, parameter = list(supp = 0), control = list(verb = FALSE) ) # add all-confidence quality(fsets)$allConfidence <- interestMeasure(fsets, measure = "allConfidence", trans) #inspect(fsets[order(size(fsets))]) # check ac <- c( 1.00, 0.67, 0.33, 0.33, 0.50, 0.33, 0.33, 0.50, 0.50, 0.33, 0.33, 1.00, 0.33, 0.60, 0.40, 0.40, 0.20, 0.40, 0.20, 0.20 ) expect_equal(round(quality(fsets)$allConfidence, 2), ac) ################################################################### ## test all measures for itemsets m1 <- interestMeasure(fsets, transactions = trans) ## now recalculate the measures using the transactions m2 <- interestMeasure(fsets, transactions = trans, reuse = FALSE) expect_equal(m1, m2) ## check if single itemset returns a single row m3 <- interestMeasure(fsets[1], transactions = trans) expect_equal(nrow(m3), 1L) ## check for empty itemset m4 <- interestMeasure(fsets[0], transactions = trans) expect_equal(nrow(m4), 0L) m5 <- interestMeasure(fsets[0], transactions = trans, reuse = FALSE) expect_equal(nrow(m5), 0L) ################################################################### # test measures for rules rules <- apriori(trans, parameter = list(supp = 0.01, conf = 0.5), control = list(verb = FALSE)) ## calculate all measures (just to see if one creates an error) m1 <- interestMeasure(rules, transactions = trans) ## ruleset without quality data.frame rules2 <- rules quality(rules2) <- quality(rules)[, 0] mr2 <- interestMeasure(rules2, transactions = trans) ## check if single rule returns a single row m2 <- interestMeasure(rules[1], transactions = trans) expect_equal(nrow(m2), 1L) ## coverage expect_equal(coverage(rules), support(lhs(rules), trans = trans)) expect_equal(coverage(rules, trans = trans, reuse = FALSE), support(lhs(rules), trans = trans)) ## check for empty ruleset m4 <- interestMeasure(rules[0], transactions = trans) expect_equal(nrow(m4), 0L) m5 <- interestMeasure(rules[0], transactions = trans, reuse = TRUE) expect_equal(nrow(m5), 0L) ## is.redundant (this test does not help much)! context("is.redundant") red <- is.redundant(rules) imp <- interestMeasure(rules, measure = "improvement") expect_equal(red, imp <= 0) #inspect(rules[!red]) #inspect(rules[red]) context("support") s_tid <- support(rules, trans, control = list(method = "tidlist")) s_ptree <- support(rules, trans, control = list(method = "ptree")) expect_equal(s_tid, s_ptree) expect_equal(s_tid, quality(rules)$support) ## FIXME: test others context("test with previous version") data("Adult") ## Mine association rules. rules <- apriori(Adult, parameter = list( supp = 0.5, conf = 0.9, target = "rules" ), control = list(verb = FALSE)) m_r <- interestMeasure(rules, transactions = Adult, reuse = TRUE) m <- interestMeasure(rules, transactions = Adult, reuse = FALSE) expect_equal(m_r, m) #dput(round(m_r, 3)) m_previous <- structure( list( support = c( 0.917, 0.953, 0.544, 0.561, 0.605, 0.633, 0.641, 0.664, 0.788, 0.782, 0.814, 0.822, 0.855, 0.871, 0.871, 0.519, 0.519, 0.542, 0.542, 0.531, 0.556, 0.541, 0.566, 0.57, 0.543, 0.547, 0.567, 0.569, 0.59, 0.611, 0.611, 0.719, 0.719, 0.749, 0.749, 0.74, 0.74, 0.779, 0.779, 0.511, 0.511, 0.511, 0.508, 0.518, 0.518, 0.52, 0.52, 0.541, 0.541, 0.68, 0.68, 0.68 ), confidence = c( 0.917, 0.953, 0.929, 0.958, 0.905, 0.947, 0.924, 0.956, 0.922, 0.914, 0.952, 0.916, 0.953, 0.949, 0.913, 0.955, 0.926, 0.92, 0.905, 0.903, 0.946, 0.904, 0.946, 0.942, 0.914, 0.921, 0.955, 0.922, 0.955, 0.953, 0.92, 0.913, 0.92, 0.95, 0.921, 0.947, 0.91, 0.948, 0.912, 0.944, 0.919, 0.903, 0.94, 0.954, 0.913, 0.951, 0.917, 0.952, 0.918, 0.946, 0.908, 0.919 ), lift = c( 1, 1, 1.013, 1.005, 0.987, 0.993, 1.007, 1.003, 1.027, 0.997, 0.998, 0.998, 0.999, 0.996, 0.996, 1.002, 1.009, 1.026, 1.059, 0.984, 0.992, 0.985, 0.993, 0.988, 1.019, 1.004, 1.002, 1.005, 1.002, 1, 1.003, 0.995, 1.025, 0.997, 1.026, 0.994, 0.992, 0.995, 0.994, 0.991, 1.024, 1.056, 0.987, 1, 1.017, 0.998, 1, 0.998, 1.001, 0.992, 0.99, 1.024 ), count = c( 44807, 46560, 26550, 27384, 29553, 30922, 31326, 32431, 38493, 38184, 39742, 40146, 41752, 42525, 42525, 25357, 25357, 26450, 26450, 25950, 27177, 26404, 27651, 27825, 26540, 26728, 27717, 27789, 28803, 29851, 29851, 35140, 35140, 36585, 36585, 36164, 36164, 38066, 38066, 24976, 24976, 24976, 24832, 25307, 25307, 25421, 25421, 26447, 26447, 33232, 33232, 33232 ), coverage = c( 1, 1, 0.585, 0.585, 0.668, 0.668, 0.694, 0.694, 0.855, 0.855, 0.855, 0.897, 0.897, 0.917, 0.953, 0.544, 0.561, 0.588, 0.598, 0.588, 0.588, 0.598, 0.598, 0.605, 0.594, 0.594, 0.594, 0.617, 0.617, 0.641, 0.664, 0.788, 0.782, 0.788, 0.814, 0.782, 0.814, 0.822, 0.855, 0.542, 0.556, 0.566, 0.541, 0.543, 0.567, 0.547, 0.567, 0.569, 0.59, 0.719, 0.749, 0.74 ), rhsSupport = c( 0.917, 0.953, 0.917, 0.953, 0.917, 0.953, 0.917, 0.953, 0.897, 0.917, 0.953, 0.917, 0.953, 0.953, 0.917, 0.953, 0.917, 0.897, 0.855, 0.917, 0.953, 0.917, 0.953, 0.953, 0.897, 0.917, 0.953, 0.917, 0.953, 0.953, 0.917, 0.917, 0.897, 0.953, 0.897, 0.953, 0.917, 0.953, 0.917, 0.953, 0.897, 0.855, 0.953, 0.953, 0.897, 0.953, 0.917, 0.953, 0.917, 0.953, 0.917, 0.897 ), leverage = c( 0, 0, 0.007, 0.003, -0.008, -0.004, 0.005, 0.002, 0.021, -0.003, -0.001, -0.001, -0.001, -0.004, -0.004, 0.001, 0.005, 0.014, 0.03, -0.008, -0.004, -0.008, -0.004, -0.007, 0.01, 0.002, 0.001, 0.003, 0.001, 0, 0.002, -0.004, 0.018, -0.002, 0.019, -0.005, -0.006, -0.004, -0.005, -0.005, 0.012, 0.027,-0.007, 0, 0.009, -0.001, 0, -0.001, 0, -0.005, -0.007, 0.016 ), hyperLift = c( 1, 1, 1.01, 1.003, 0.984, 0.992, 1.005, 1.002, 1.026, 0.995, 0.997, 0.997, 0.998, 0.995, 0.995, 1, 1.007, 1.023, 1.055, 0.982, 0.99, 0.982, 0.991, 0.986, 1.016, 1.001, 1, 1.002, 1, 0.998, 1.001, 0.993, 1.024, 0.996, 1.024, 0.992, 0.99, 0.994, 0.993, 0.988, 1.021, 1.052, 0.984, 0.998, 1.014, 0.996, 0.997, 0.996, 0.998, 0.991, 0.988, 1.022 ), hyperConfidence = c( 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0.01, 0, 0, 0.978, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0.983, 1, 0.998, 0.298, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0.61, 1, 0.006, 0.412, 0.028, 0.779, 0, 0, 1 ), fishersExactTest = c( 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0.99, 1, 1, 0.022, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0.017, 0, 0.002, 0.702, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0.39, 0, 0.994, 0.588, 0.972, 0.221, 1, 1, 0 ), improvement = c( 0.917, 0.953, 0.012, 0.005, -0.012, -0.006, 0.007, 0.003, 0.922, -0.003, -0.002, -0.001,-0.001, -0.004, -0.004, -0.003, -0.003, -0.001, 0.905, -0.014,-0.007, -0.014, -0.007, -0.012, -0.007, -0.003, -0.002, -0.002,-0.001, -0.004, -0.003, -0.004, -0.001, -0.003, -0.001, -0.006,-0.007, -0.005, -0.006, -0.009, -0.003, -0.002, -0.013, -0.003,-0.009, -0.005, -0.007, -0.005, -0.006, -0.008, -0.009, -0.003 ), chiSquared = c( NA, NA, 124.024, 38.278, 194.725, 85.079, 62.203, 25.802, 1847.852, 35.656, 17.552, 12.358, 5.138, 215.573, 215.573, 4.175, 60.714, 403.069, 1471.306, 188.513, 88.095, 184.183, 81.673, 231.929, 224.338, 11.604, 4.589, 20.647, 8.588, 0.259, 11.924, 48.398, 993.053, 33.023, 1240.572, 150.033, 154.846, 131.101, 122.002, 105.056, 310.185, 1195.368, 211.9, 0.091, 169.967, 6.287, 0.042, 3.57, 0.617, 161.375, 157.068, 699.642 ), cosine = c( 0.958, 0.976, 0.742, 0.751, 0.773, 0.793, 0.804, 0.816, 0.9, 0.883, 0.901, 0.906, 0.924, 0.931, 0.931, 0.721, 0.724, 0.745, 0.757, 0.723, 0.743, 0.73, 0.75, 0.75, 0.744, 0.741, 0.754, 0.756, 0.769, 0.782, 0.783, 0.846, 0.859, 0.864, 0.877, 0.858, 0.857, 0.88, 0.88, 0.712, 0.724, 0.735, 0.708, 0.72, 0.726, 0.721, 0.721, 0.735, 0.736, 0.822, 0.821, 0.835 ), conviction = c( 1, 1, 1.165, 1.119, 0.871, 0.883, 1.086, 1.074, 1.31, 0.964, 0.966, 0.982, 0.985, 0.917, 0.953, 1.04, 1.116, 1.29, 1.528, 0.852, 0.862, 0.856, 0.869, 0.799, 1.199, 1.044, 1.038, 1.057, 1.05, 0.992, 1.038, 0.948, 1.287, 0.943, 1.291, 0.883, 0.918, 0.902, 0.936, 0.838, 1.267, 1.498, 0.785, 1.006, 1.18, 0.955, 0.997, 0.967, 1.01, 0.86, 0.901, 1.265 ), gini = c( NA, NA, 0, 0, 0.001, 0, 0, 0, 0.007, 0, 0, 0, 0, 0, 0.001, 0, 0, 0.002, 0.007, 0.001, 0, 0.001, 0, 0, 0.001, 0, 0, 0, 0, 0, 0, 0, 0.004, 0, 0.005, 0, 0, 0, 0, 0, 0.001, 0.006, 0, 0, 0.001, 0, 0, 0, 0, 0, 0, 0.003 ), oddsRatio = c( NA, NA, 1.441, 1.304, 0.587, 0.634, 1.31, 1.256, 3.84, 0.736, 0.756, 0.816, 0.843, 0, 0, 1.092, 1.291, 1.815, 2.683, 0.618, 0.652, 0.619, 0.66, 0.476, 1.561, 1.12, 1.097, 1.164, 1.136, 0.977, 1.126, 0.739, 2.611, 0.719, 2.963, 0.451, 0.534, 0.435, 0.535, 0.634, 1.69, 2.45, 0.516, 1.013, 1.474, 0.897, 0.993, 0.921, 1.027, 0.489, 0.584, 2.222 ), phi = c( NA, NA, 0.05, 0.028, -0.063, -0.042, 0.036, 0.023, 0.195, -0.027,-0.019, -0.016, -0.01, -0.066, -0.066, 0.009, 0.035, 0.091, 0.174,-0.062, -0.042, -0.061, -0.041, -0.069, 0.068, 0.015, 0.01, 0.021, 0.013, -0.002, 0.016, -0.031, 0.143, -0.026, 0.159, -0.055, -0.056,-0.052, -0.05, -0.046, 0.08, 0.156, -0.066, 0.001, 0.059, -0.011,-0.001, -0.009, 0.004, -0.057, -0.057, 0.12 ), doc = c( NA, NA, 0.028, 0.012, -0.037, -0.019, 0.021, 0.011, 0.168, -0.021, -0.011,-0.014, -0.007, -0.051, -0.087, 0.004, 0.02, 0.056, 0.125, -0.035,-0.018, -0.034, -0.018, -0.03, 0.042, 0.009, 0.004, 0.012, 0.006,-0.001, 0.009, -0.021, 0.105, -0.013, 0.124, -0.028, -0.04, -0.029,-0.039, -0.02, 0.049, 0.111, -0.028, 0.001, 0.036, -0.005, -0.001,-0.004, 0.002, -0.027, -0.036, 0.083 ), RLD = c( NA, NA, 0.141, 0.106, 0.299, 0.268, 0.079, 0.069, 0.237, 0.219, 0.208, 0.157, 0.137, 1, 1, 0.038, 0.104, 0.225, 0.345, 0.247, 0.229, 0.25, 0.225, 0.385, 0.166, 0.042, 0.036, 0.054, 0.047, 0.014, 0.037, 0.202, 0.223, 0.227, 0.226, 0.474, 0.392, 0.503, 0.404, 0.228, 0.21, 0.333, 0.323, 0.006, 0.152, 0.056, 0.004, 0.044, 0.01, 0.416, 0.326, 0.21 ), imbalance = c( 0.083, 0.047, 0.347, 0.377, 0.254, 0.288, 0.23, 0.263, 0.044, 0.063, 0.099, 0.02, 0.056, 0.036, 0.036, 0.419, 0.372, 0.327, 0.282, 0.338, 0.37, 0.327, 0.36, 0.352, 0.32, 0.335, 0.366, 0.311, 0.343, 0.317, 0.261, 0.131, 0.12, 0.166, 0.087, 0.172, 0.105, 0.132, 0.063, 0.419, 0.362, 0.318, 0.419, 0.419, 0.348, 0.414, 0.363, 0.392, 0.339, 0.236, 0.171, 0.164 ), kulczynski = c( 0.959, 0.977, 0.761, 0.773, 0.782, 0.806, 0.812, 0.827, 0.9, 0.883, 0.903, 0.906, 0.925, 0.931, 0.931, 0.75, 0.746, 0.762, 0.769, 0.741, 0.765, 0.746, 0.77, 0.77, 0.76, 0.759, 0.775, 0.771, 0.787, 0.797, 0.793, 0.849, 0.861, 0.868, 0.878, 0.862, 0.859, 0.883, 0.881, 0.74, 0.744, 0.751, 0.737, 0.749, 0.745, 0.749, 0.742, 0.76, 0.754, 0.83, 0.825, 0.839 ), collectiveStrength = c( 0, 0, 2100.469, 1109.947, 885.158, 537.551, 1505.665, 821.045, 2209.719, 444.05, 257.474, 343.017, 199.964, 0, 0, 1095.646, 2071.171, 2983.257, 5296.758, 1183.735, 703.514, 1151.931, 690.502, 528.595, 2702.14, 1763.053, 981.469, 1710.534, 948.714, 805.671, 1476.354, 660.623, 2315.901, 366.007, 2236.759, 250.406, 431.434, 193.157, 331.092, 783.815, 3036.8, 5290.847, 680.099, 1049.923, 2754.658, 967.708, 1737.545, 934.617, 1684.277, 358.06, 645.367, 2372.283 ), jaccard = c( 0.917, 0.953, 0.567, 0.573, 0.617, 0.64, 0.661, 0.675, 0.817, 0.789, 0.818, 0.828, 0.858, 0.871, 0.871, 0.531, 0.541, 0.574, 0.594, 0.545, 0.565, 0.554, 0.574, 0.576, 0.573, 0.567, 0.579, 0.589, 0.601, 0.621, 0.63, 0.73, 0.75, 0.755, 0.779, 0.744, 0.747, 0.783, 0.785, 0.52, 0.543, 0.562, 0.516, 0.53, 0.547, 0.531, 0.54, 0.552, 0.561, 0.686, 0.69, 0.711 ), kappa = c( 0, 0, 0.032, 0.014, -0.046,-0.024, 0.027, 0.014, 0.191, -0.026, -0.016, -0.016, -0.009,-0.063, -0.063, 0.004, 0.021, 0.063, 0.139, -0.039, -0.021, -0.04,-0.021, -0.035, 0.048, 0.01, 0.005, 0.014, 0.007, -0.001, 0.011,-0.027, 0.129, -0.019, 0.15, -0.04, -0.051, -0.04, -0.048, -0.021, 0.053, 0.121, -0.03, 0.001, 0.04, -0.005, -0.001, -0.004, 0.002,-0.036, -0.046, 0.103 ), mutualInformation = c( NA, NA, 0.004, 0.002, 0.007, 0.005, 0.002, 0.001, 0.046, 0.001, 0.001, 0, 0, NA, NA, 0, 0.002, 0.012, 0.036, 0.007, 0.005, 0.007, 0.005, 0.013, 0.007, 0, 0, 0.001, 0, 0, 0, 0.002, 0.027, 0.002, 0.033, 0.009, 0.006, 0.008, 0.005, 0.006, 0.01, 0.029, 0.012, 0, 0.005, 0, 0, 0, 0, 0.01, 0.006, 0.02 ), lambda = c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), jMeasure = c( 0, 0, 0.001, 0, 0.001, 0, 0, 0, 0.003, 0, 0, 0, 0, 0, 0, 0, 0, 0.002, 0.007, 0.001, 0, 0.001, 0, 0.001, 0.001, 0, 0, 0, 0, 0, 0, 0, 0.002, 0, 0.003, 0, 0, 0, 0, 0, 0.002, 0.006, 0.001, 0, 0.001, 0, 0, 0, 0, 0, 0, 0.002 ), laplace = c( 0.917, 0.953, 0.929, 0.958, 0.905, 0.947, 0.924, 0.956, 0.922, 0.914, 0.952, 0.916, 0.953, 0.949, 0.913, 0.955, 0.926, 0.92, 0.905, 0.903, 0.946, 0.904, 0.946, 0.941, 0.914, 0.921, 0.955, 0.922, 0.955, 0.953, 0.92, 0.913, 0.92, 0.95, 0.921, 0.947, 0.91, 0.948, 0.912, 0.944, 0.919, 0.903, 0.94, 0.954, 0.913, 0.951, 0.917, 0.952, 0.918, 0.946, 0.908, 0.919 ), certainty = c( 0, 0, 0.141, 0.106, -0.148, -0.133, 0.079, 0.069, 0.237, -0.037, -0.035, -0.018,-0.016, -0.09, -0.049, 0.038, 0.104, 0.225, 0.345, -0.173, -0.16,-0.168, -0.151, -0.251, 0.166, 0.042, 0.036, 0.054, 0.047, -0.008, 0.037, -0.054, 0.223, -0.061, 0.226, -0.132, -0.09, -0.109, -0.069,-0.193, 0.21, 0.333, -0.274, 0.006, 0.152, -0.047, -0.003, -0.034, 0.01, -0.162, -0.109, 0.21 ), addedValue = c( 0, 0, 0.012, 0.005,-0.012, -0.006, 0.007, 0.003, 0.024, -0.003, -0.002, -0.001,-0.001, -0.004, -0.004, 0.002, 0.009, 0.023, 0.05, -0.014, -0.007,-0.014, -0.007, -0.012, 0.017, 0.004, 0.002, 0.004, 0.002, 0, 0.003, -0.004, 0.023, -0.003, 0.023, -0.006, -0.007, -0.005,-0.006, -0.009, 0.022, 0.048, -0.013, 0, 0.016, -0.002, 0, -0.002, 0.001, -0.008, -0.009, 0.022 ), maxconfidence = c( 1, 1, 0.929, 0.958, 0.905, 0.947, 0.924, 0.956, 0.922, 0.914, 0.952, 0.916, 0.953, 0.949, 0.949, 0.955, 0.926, 0.92, 0.905, 0.903, 0.946, 0.904, 0.946, 0.942, 0.914, 0.921, 0.955, 0.922, 0.955, 0.953, 0.92, 0.913, 0.92, 0.95, 0.921, 0.947, 0.91, 0.948, 0.912, 0.944, 0.919, 0.903, 0.94, 0.954, 0.913, 0.951, 0.917, 0.952, 0.918, 0.946, 0.908, 0.919 ), rulePowerFactor = c( 0.842, 0.909, 0.505, 0.537, 0.548, 0.6, 0.593, 0.635, 0.726, 0.715, 0.774, 0.753, 0.814, 0.826, 0.795, 0.496, 0.481, 0.498, 0.49, 0.48, 0.526, 0.488, 0.536, 0.536, 0.497, 0.504, 0.542, 0.524, 0.563, 0.582, 0.563, 0.657, 0.662, 0.712, 0.69, 0.701, 0.674, 0.739, 0.711, 0.483, 0.47, 0.462, 0.478, 0.494, 0.473, 0.495, 0.477, 0.515, 0.497, 0.643, 0.618, 0.625 ), ralambondrainy = c( 0.083, 0.047, 0.042, 0.024, 0.063, 0.035, 0.053, 0.03, 0.067, 0.073, 0.041, 0.075, 0.043, 0.047, 0.083, 0.024, 0.042, 0.047, 0.057, 0.057, 0.032, 0.058, 0.032, 0.035, 0.051, 0.047, 0.027, 0.048, 0.027, 0.03, 0.053, 0.069, 0.062, 0.039, 0.065, 0.041, 0.073, 0.043, 0.075, 0.03, 0.045, 0.055, 0.032, 0.025, 0.049, 0.027, 0.047, 0.027, 0.048, 0.039, 0.069, 0.06 ), confirmedConfidence = c( 0.835, 0.907, 0.858, 0.917, 0.81, 0.894, 0.848, 0.913, 0.843, 0.829, 0.903, 0.832, 0.905, 0.898, 0.827, 0.91, 0.852, 0.841, 0.81, 0.806, 0.892, 0.807, 0.892, 0.883, 0.829, 0.842, 0.91, 0.844, 0.911, 0.906, 0.841, 0.826, 0.841, 0.901, 0.841, 0.894, 0.82, 0.896, 0.823, 0.889, 0.838, 0.807, 0.881, 0.907, 0.826, 0.902, 0.834, 0.903, 0.836, 0.891, 0.817, 0.838 ), sebag = c( 11.105, 20.403, 13.098, 22.954, 9.542, 17.895, 12.142, 21.987, 11.775, 10.672, 19.674, 10.891, 20.073, 18.635, 10.539, 21.255, 12.51, 11.575, 9.538, 9.318, 17.444, 9.366, 17.59, 16.102, 10.684, 11.641, 21.207, 11.795, 21.463, 20.238, 11.57, 10.48, 11.544, 19.175, 11.589, 17.903, 10.107, 18.301, 10.327, 16.944, 11.348, 9.337, 15.796, 20.525, 10.501, 19.45, 11.072, 19.707, 11.225, 17.417, 9.911, 11.334 ), counterexample = c( 0.91, 0.951, 0.924, 0.956, 0.895, 0.944, 0.918, 0.955, 0.915, 0.906, 0.949, 0.908, 0.95, 0.946, 0.905, 0.953, 0.92, 0.914, 0.895, 0.893, 0.943, 0.893, 0.943, 0.938, 0.906, 0.914, 0.953, 0.915, 0.953, 0.951, 0.914, 0.905, 0.913, 0.948, 0.914, 0.944, 0.901, 0.945, 0.903, 0.941, 0.912, 0.893, 0.937, 0.951, 0.905, 0.949, 0.91, 0.949, 0.911, 0.943, 0.899, 0.912 ), casualSupport = c( 1.752, 1.86, 1.419, 1.49, 1.459, 1.551, 1.506, 1.587, 1.619, 1.626, 1.726, 1.664, 1.766, 1.777, 1.705, 1.448, 1.395, 1.392, 1.34, 1.392, 1.478, 1.4, 1.487, 1.488, 1.39, 1.418, 1.494, 1.438, 1.516, 1.534, 1.476, 1.568, 1.555, 1.663, 1.582, 1.652, 1.585, 1.69, 1.621, 1.434, 1.364, 1.312, 1.43, 1.446, 1.366, 1.447, 1.391, 1.467, 1.411, 1.595, 1.529, 1.518 ), casualConfidence = c( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ), leastContradiction = c( 1, 1, 0.593, 0.588, 0.66, 0.664, 0.699, 0.697, 0.878, 0.852, 0.854, 0.896, 0.897, 0.913, 0.949, 0.545, 0.566, 0.603, 0.633, 0.579, 0.584, 0.589, 0.594, 0.598, 0.605, 0.597, 0.595, 0.62, 0.619, 0.641, 0.666, 0.784, 0.802, 0.786, 0.835, 0.777, 0.807, 0.818, 0.85, 0.536, 0.57, 0.598, 0.533, 0.544, 0.577, 0.546, 0.567, 0.568, 0.59, 0.714, 0.742, 0.758 ), centeredConfidence = c( 0, 0, 0.012, 0.005, -0.012, -0.006, 0.007, 0.003, 0.024, -0.003, -0.002, -0.001, -0.001, -0.004,-0.004, 0.002, 0.009, 0.023, 0.05, -0.014, -0.007, -0.014,-0.007, -0.012, 0.017, 0.004, 0.002, 0.004, 0.002, 0, 0.003,-0.004, 0.023, -0.003, 0.023, -0.006, -0.007, -0.005, -0.006,-0.009, 0.022, 0.048, -0.013, 0, 0.016, -0.002, 0, -0.002, 0.001, -0.008, -0.009, 0.022 ), varyingLiaison = c( 0, 0, 0.013, 0.005, -0.013, -0.007, 0.007, 0.003, 0.027, -0.003, -0.002,-0.002, -0.001, -0.004, -0.004, 0.002, 0.009, 0.026, 0.059,-0.016, -0.008, -0.015, -0.007, -0.012, 0.019, 0.004, 0.002, 0.005, 0.002, 0, 0.003, -0.005, 0.025, -0.003, 0.026, -0.006,-0.008, -0.005, -0.006, -0.009, 0.024, 0.056, -0.013, 0, 0.017, -0.002, 0, -0.002, 0.001, -0.008, -0.01, 0.024 ), yuleQ = c( NA, NA, 0.181, 0.132, -0.26, -0.224, 0.134, 0.113, 0.587, -0.152,-0.139, -0.102, -0.085, -1, -1, 0.044, 0.127, 0.289, 0.457,-0.236, -0.211, -0.235, -0.204, -0.355, 0.219, 0.056, 0.046, 0.076, 0.064, -0.011, 0.059, -0.15, 0.446, -0.164, 0.495,-0.378, -0.303, -0.394, -0.303, -0.224, 0.257, 0.42, -0.319, 0.006, 0.192, -0.054, -0.003, -0.041, 0.013, -0.343, -0.263, 0.379 ), yuleY = c( NA, NA, 0.091, 0.066, -0.132, -0.113, 0.067, 0.057, 0.324, -0.076, -0.07, -0.051, -0.043, -1, -1, 0.022, 0.064, 0.148, 0.242, -0.12, -0.107, -0.119, -0.103, -0.183, 0.111, 0.028, 0.023, 0.038, 0.032, -0.006, 0.03, -0.075, 0.235, -0.082, 0.265, -0.196, -0.155, -0.205, -0.155, -0.113, 0.131, 0.22, -0.164, 0.003, 0.097, -0.027, -0.002, -0.021, 0.007, -0.177, -0.134, 0.197 ), lerman = c( 0, 0, 2.062, 0.861,-2.309, -1.148, 1.254, 0.607, 5.242, -0.653, -0.345, -0.324,-0.157, -0.912, -0.912, 0.298, 1.484, 4.126, 9.256, -2.532,-1.302, -2.472, -1.238, -2.069, 3.056, 0.624, 0.295, 0.808, 0.392, -0.066, 0.575, -0.92, 4.715, -0.572, 4.869, -1.237,-1.544, -1.044, -1.21, -1.5, 3.757, 8.671, -2.133, 0.044, 2.746, -0.365, -0.039, -0.268, 0.145, -1.454, -1.805, 4.316 ), implicationIndex = c( 0, 0, -6.871, -3.891, 7.696, 5.185,-4.177, -2.743, -15.504, 2.178, 1.557, 1.078, 0.709, 4.12, 3.04, -1.348, -4.947, -12.203, -22.48, 8.438, 5.88, 8.238, 5.592, 9.344, -9.038, -2.078, -1.332, -2.693, -1.77, 0.298,-1.917, 3.067, -13.945, 2.583, -14.402, 5.587, 5.145, 4.717, 4.031, 6.776, -11.112, -21.058, 9.633, -0.199, -8.122, 1.647, 0.13, 1.211, -0.482, 6.569, 6.013, -12.766 ), importance = c( 0.264, 0.28, 0.013, 0.005, -0.017, -0.008, 0.01, 0.005, 0.087, -0.01,-0.005, -0.007, -0.003, -0.023, -0.039, 0.002, 0.009, 0.027, 0.064, -0.016, -0.008, -0.016, -0.008, -0.014, 0.02, 0.004, 0.002, 0.006, 0.003, 0, 0.004, -0.01, 0.052, -0.006, 0.063,-0.013, -0.019, -0.013, -0.018, -0.009, 0.024, 0.057, -0.013, 0, 0.018, -0.002, 0, -0.002, 0.001, -0.012, -0.017, 0.041 ), stdLift = c( 1, 1, 0.291, 0.477, 0.051, 0.243, 0.239, 0.354, 0.217, 0.113, 0.115, 0.086, 0.089, 0, 0, 0.44, 0.26, 0.205, 0.051, 0.031, 0.317, 0.035, 0.311, 0.243, 0.144, 0.209, 0.427, 0.218, 0.412, 0.354, 0.204, 0.129, 0.203, 0.164, 0.206, 0.115, 0.1, 0.089, 0.086, 0.274, 0.19, 0.033, 0.207, 0.418, 0.13, 0.427, 0.172, 0.412, 0.182, 0.164, 0.084, 0.189 ), boost = c( Inf, Inf, 1.013, 1.005, 0.987, 0.993, 1.007, 1.003, Inf, 0.997, 0.998, 0.998, 0.999, 0.996, 0.996, 0.997, 0.997, 0.999, Inf, 0.984, 0.992, 0.985, 0.993, 0.988, 0.992, 0.997, 0.998, 0.998, 0.999, 0.996, 0.996, 0.995, 0.998, 0.997, 0.999, 0.994, 0.992, 0.995, 0.994, 0.991, 0.997, 0.998, 0.987, 0.997, 0.991, 0.994, 0.993, 0.995, 0.994, 0.992, 0.99, 0.997 ), table.n11 = c( 44807, 46560, 26550, 27384, 29553, 30922, 31326, 32431, 38493, 38184, 39742, 40146, 41752, 42525, 42525, 25357, 25357, 26450, 26450, 25950, 27177, 26404, 27651, 27825, 26540, 26728, 27717, 27789, 28803, 29851, 29851, 35140, 35140, 36585, 36585, 36164, 36164, 38066, 38066, 24976, 24976, 24976, 24832, 25307, 25307, 25421, 25421, 26447, 26447, 33232, 33232, 33232 ), table.n01 = c( 0, 0, 18257, 19176, 15254, 15638, 13481, 14129, 5339, 6623, 6818, 4661, 4808, 4035, 2282, 21203, 19450, 17382, 15312, 18857, 19383, 18403, 18909, 18735, 17292, 18079, 18843, 17018, 17757, 16709, 14956, 9667, 8692, 9975, 7247, 10396, 8643, 8494, 6741, 21584, 18856, 16786, 21728, 21253, 18525, 21139, 19386, 20113, 18360, 13328, 11575, 10600 ), table.n10 = c( 4035, 2282, 2027, 1193, 3097, 1728, 2580, 1475, 3269, 3578, 2020, 3686, 2080, 2282, 4035, 1193, 2027, 2285, 2773, 2785, 1558, 2819, 1572, 1728, 2484, 2296, 1307, 2356, 1342, 1475, 2580, 3353, 3044, 1908, 3157, 2020, 3578, 2080, 3686, 1474, 2201, 2675, 1572, 1233, 2410, 1307, 2296, 1342, 2356, 1908, 3353, 2932 ), table.n00 = c( 0, 0, 2008, 1089, 938, 554, 1455, 807, 1741, 457, 262, 349, 202, 0, 0, 1089, 2008, 2725, 4307, 1250, 724, 1216, 710, 554, 2526, 1739, 975, 1679, 940, 807, 1455, 682, 1966, 374, 1853, 262, 457, 202, 349, 808, 2809, 4405, 710, 1049, 2600, 975, 1739, 940, 1679, 374, 682, 2078 ), relativeRisk = c(NaN, NaN, 1.031, 1.013, 0.961, 0.981, 1.024, 1.011, 1.222, 0.977, 0.988, 0.984, 0.993, 0.949, 0.913, 1.004, 1.022, 1.065, 1.16, 0.963, 0.981, 0.963, 0.982, 0.969, 1.048, 1.009, 1.004, 1.013, 1.006, 0.999, 1.01, 0.977, 1.128, 0.986, 1.156, 0.971, 0.958, 0.971, 0.959, 0.98, 1.056, 1.14, 0.971, 1.001, 1.041, 0.995, 0.999, 0.996, 1.002, 0.972, 0.962, 1.099) ), row.names = c(NA,-52L), class = "data.frame" ) if (!all(setequal(names(m_previous), names(m_r)))) warning("Not all interestMeasures are tested! Missing data for: ", paste(setdiff(names(m_r), names(m_previous)), collapse = ", ")) expect_equivalent(m_previous, round(m_r[names(m_previous)], 3))