# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. library(dplyr, warn.conflicts = FALSE) suppressPackageStartupMessages(library(bit64)) skip_if_not_available("acero") # Skip these tests on CRAN due to build times > 10 mins skip_on_cran() tbl <- example_data tbl$verses <- verses[[1]] tbl$another_chr <- tail(letters, 10) test_that("%in% handles dictionary type", { df <- tibble::tibble(x = factor(c("a", "b", "c"))) compare_dplyr_binding( .input %>% filter(x %in% "a") %>% collect(), df ) }) test_that("if_else and ifelse", { compare_dplyr_binding( .input %>% mutate( y = if_else(int > 5, 1, 0), y2 = dplyr::if_else(int > 6, 1, 0) ) %>% collect(), tbl ) compare_dplyr_binding( .input %>% mutate( y = if_else(int > 5, int, 0L) ) %>% collect(), tbl ) expect_error( Table$create(tbl) %>% mutate( y = if_else(int > 5, 1, FALSE) ) %>% collect(), "NotImplemented: Function 'if_else' has no kernel matching input types" ) compare_dplyr_binding( .input %>% mutate( y = if_else(int > 5, 1, NA_real_) ) %>% collect(), tbl ) compare_dplyr_binding( .input %>% mutate( y = ifelse(int > 5, 1, 0), y2 = base::ifelse(int > 6, 1, 0) ) %>% collect(), tbl ) compare_dplyr_binding( .input %>% mutate( y = if_else(dbl > 5, TRUE, FALSE) ) %>% collect(), tbl ) compare_dplyr_binding( .input %>% mutate( y = if_else(chr %in% letters[1:3], 1L, 3L) ) %>% collect(), tbl ) compare_dplyr_binding( .input %>% mutate( y = if_else(int > 5, "one", "zero") ) %>% collect(), tbl ) compare_dplyr_binding( .input %>% mutate( y = if_else(int > 5, chr, another_chr) ) %>% collect(), tbl ) compare_dplyr_binding( .input %>% mutate( y = if_else(int > 5, "true", chr, missing = "MISSING") ) %>% collect(), tbl ) compare_dplyr_binding( .input %>% mutate( y = if_else(int > 5, fct, factor("a")) ) %>% collect() %>% # Arrow if_else() kernel does not preserve unused factor levels, # so reset the levels of all the factor columns to make the test pass # (ARROW-14649) transmute(across( where(is.factor), ~ factor(.x, levels = c("a", "b", "c", "d", "g", "h", "i", "j")) )), tbl ) # detecting NA and NaN works just fine compare_dplyr_binding( .input %>% mutate( y = if_else(is.na(dbl), chr, "false", missing = "MISSING") ) %>% collect(), example_data_for_sorting ) # However, currently comparisons with NaNs return false and not NaNs or NAs skip("ARROW-13364") compare_dplyr_binding( .input %>% mutate( y = if_else(dbl > 5, chr, another_chr, missing = "MISSING") ) %>% collect(), example_data_for_sorting ) skip("TODO: could? should? we support the autocasting in ifelse") compare_dplyr_binding( .input %>% mutate(y = ifelse(int > 5, 1, FALSE)) %>% collect(), tbl ) }) test_that("case_when()", { compare_dplyr_binding( .input %>% transmute(cw = case_when(lgl ~ dbl, !false ~ dbl + dbl2)) %>% collect(), tbl ) compare_dplyr_binding( .input %>% mutate(cw = case_when(int > 5 ~ 1, TRUE ~ 0)) %>% collect(), tbl ) compare_dplyr_binding( .input %>% mutate(cw = case_when(int > 5 ~ 1, .default = 0)) %>% collect(), tbl ) compare_dplyr_binding( .input %>% transmute(cw = case_when(chr %in% letters[1:3] ~ 1L) + 41L) %>% collect(), tbl ) # Test finding R functions from the user's environment isIn <- function(x, y) x %in% y withr::with_options(list(arrow.debug = TRUE), { expect_output( compare_dplyr_binding( .input %>% transmute(cw = case_when(isIn(chr, letters[1:3]) ~ 1L) + 41L) %>% collect(), tbl ), "Adding isIn to the function environment" ) }) compare_dplyr_binding( .input %>% filter(case_when( dbl + int - 1.1 == dbl2 ~ TRUE, NA ~ NA, TRUE ~ FALSE ) & !is.na(dbl2)) %>% collect(), tbl ) # with namespacing compare_dplyr_binding( .input %>% filter(dplyr::case_when( dbl + int - 1.1 == dbl2 ~ TRUE, NA ~ NA, TRUE ~ FALSE ) & !is.na(dbl2)) %>% collect(), tbl ) # dplyr::case_when() errors if values on right side of formulas do not have # exactly the same type, but the Arrow case_when kernel allows compatible types expect_equal( tbl %>% mutate(i64 = as.integer64(1e10)) %>% Table$create() %>% transmute(cw = case_when( is.na(fct) ~ int, is.na(chr) ~ dbl, TRUE ~ i64 )) %>% collect(), tbl %>% transmute( cw = ifelse(is.na(fct), int, ifelse(is.na(chr), dbl, 1e10)) ) ) # validation errors expect_arrow_eval_error( case_when(), "No cases provided", class = "validation_error" ) expect_arrow_eval_error( case_when(TRUE ~ FALSE, TRUE), "Each argument to case_when\\(\\) must be a two-sided formula", class = "validation_error" ) expect_arrow_eval_error( case_when(0L ~ FALSE, TRUE ~ FALSE), "Left side of each formula in case_when\\(\\) must be a logical expression", class = "validation_error" ) expect_arrow_eval_error( # non-logical Arrow column reference on left side of formula case_when(int ~ FALSE), "Left side of each formula in case_when\\(\\) must be a logical expression", class = "validation_error" ) expect_arrow_eval_error( # non-logical Arrow column reference on left side of formula case_when(dbl + 3.14159 ~ TRUE), "Left side of each formula in case_when\\(\\) must be a logical expression", class = "validation_error" ) expect_arrow_eval_error( case_when(int > 5 ~ 1, .default = c(0, 1)), "`.default` must have size 1, not size 2", class = "validation_error" ) expect_arrow_eval_error( case_when(int > 5 ~ 1, .ptype = integer()), "`case_when\\(\\)` with `.ptype` specified not supported in Arrow", class = "arrow_not_supported" ) expect_arrow_eval_error( case_when(int > 5 ~ 1, .size = 10), "`case_when\\(\\)` with `.size` specified not supported in Arrow", class = "arrow_not_supported" ) compare_dplyr_binding( .input %>% transmute(cw = case_when(lgl ~ "abc")) %>% collect(), tbl ) compare_dplyr_binding( .input %>% transmute(cw = case_when(lgl ~ verses, !false ~ paste(chr, chr))) %>% collect(), tbl ) compare_dplyr_binding( .input %>% mutate( cw = case_when(!(!(!(lgl))) ~ factor(chr), TRUE ~ fct) ) %>% collect(), tbl, warning = TRUE ) }) test_that("coalesce()", { # character df <- tibble( w = c(NA_character_, NA_character_, NA_character_), x = c(NA_character_, NA_character_, "c"), y = c(NA_character_, "b", "c"), z = c("a", "b", "c") ) compare_dplyr_binding( .input %>% mutate( cw = coalesce(w), cz = coalesce(z), cwx = coalesce(w, x), cwxy = coalesce(w, x, y), cwxyz = coalesce(w, x, y, z) ) %>% collect(), df ) # with namespacing compare_dplyr_binding( .input %>% mutate( cw = dplyr::coalesce(w), cz = dplyr::coalesce(z), cwx = dplyr::coalesce(w, x), cwxy = dplyr::coalesce(w, x, y), cwxyz = dplyr::coalesce(w, x, y, z) ) %>% collect(), df ) # factor df_fct <- df %>% transmute(across(everything(), ~ factor(.x, levels = c("a", "b", "c")))) compare_dplyr_binding( .input %>% mutate( cw = coalesce(w), cz = coalesce(z), cwx = coalesce(w, x), cwxy = coalesce(w, x, y), cwxyz = coalesce(w, x, y, z) ) %>% collect() %>% # Arrow coalesce() kernel does not preserve unused factor levels, # so reset the levels of all the factor columns to make the test pass # (ARROW-14649) transmute(across(where(is.factor), ~ factor(.x, levels = c("a", "b", "c")))), df_fct ) # integer df <- tibble( w = c(NA_integer_, NA_integer_, NA_integer_), x = c(NA_integer_, NA_integer_, 3L), y = c(NA_integer_, 2L, 3L), z = 1:3 ) compare_dplyr_binding( .input %>% mutate( cw = coalesce(w), cz = coalesce(z), cwx = coalesce(w, x), cwxy = coalesce(w, x, y), cwxyz = coalesce(w, x, y, z) ) %>% collect(), df ) # double with NaNs df <- tibble( w = c(NA_real_, NaN, NA_real_), x = c(NA_real_, NaN, 3.3), y = c(NA_real_, 2.2, 3.3), z = c(1.1, 2.2, 3.3) ) # we can't use compare_dplyr_binding here as dplyr silently converts NaN to NA in coalesce() # see https://github.com/tidyverse/dplyr/issues/6833 expect_identical( arrow_table(df) %>% mutate( cw = coalesce(w), cz = coalesce(z), cwx = coalesce(w, x), cwxy = coalesce(w, x, y), cwxyz = coalesce(w, x, y, z) ) %>% collect(), mutate( df, cw = c(NA, NaN, NA), cz = c(1.1, 2.2, 3.3), cwx = c(NA, NaN, 3.3), cwxy = c(NA, 2.2, 3.3), cwxyz = c(1.1, 2.2, 3.3) ) ) # NaNs stay NaN and are not converted to NA in the results # (testing this requires expect_identical()) expect_identical( df %>% Table$create() %>% mutate(cwx = coalesce(w, x)) %>% collect(), df %>% mutate(cwx = c(NA, NaN, 3.3)) ) expect_identical( df %>% Table$create() %>% transmute(cw = coalesce(w)) %>% collect(), df %>% transmute(cw = w) ) expect_identical( df %>% Table$create() %>% transmute(cn = coalesce(NaN)) %>% collect(), df %>% transmute(cn = NaN) ) # singles stay single expect_equal( (df %>% Table$create(schema = schema( w = float32(), x = float32(), y = float32(), z = float32() )) %>% transmute(c = coalesce(w, x, y, z)) %>% compute() )$schema[[1]]$type, float32() ) # with R literal values expect_identical( arrow_table(df) %>% mutate( c1 = coalesce(4.4), c2 = coalesce(NA_real_), c3 = coalesce(NaN), c4 = coalesce(w, x, y, 5.5), c5 = coalesce(w, x, y, NA_real_), c6 = coalesce(w, x, y, NaN) ) %>% collect(), mutate( df, c1 = 4.4, c2 = NA_real_, c3 = NaN, c4 = c(5.5, 2.2, 3.3), c5 = c(NA, 2.2, 3.3), c6 = c(NaN, 2.2, 3.3) ) ) # no arguments expect_arrow_eval_error( coalesce(), "At least one argument must be supplied to coalesce\\(\\)", class = "validation_error" ) })